Neutrophils play a crucial early role during the innate response, but little is known about their possible contribution when an adaptive immune response is installed. A robust neutrophilia and a T helper 1 (Th1) immune response are present after immunization with Complete Freund Adjuvant (CFA). We show that when FITC-labeled OVA was injected into the footpad of OVA/CFA immunized mice, the main OVA-FITC+ cells recruited in draining popliteal lymph nodes (LNs) were neutrophils, with most of them arriving at the LN by means of lymphatic vessels. The development of this OVA-FITC+ neutrophil influx requires an immune response against OVA. The OVA-FITC+ neutrophils present in LNs displayed mainly intracellular TNF-alpha, and their depletion resulted in an increase in the specific IL-5 levels. These data provide new evidence about the role played by neutrophils in vivo in adaptive immunity.
Although much is described about the molecules involved in neutrophil migration from circulation into tissues, less is known about the molecular mechanisms that regulate neutrophil entry into lymph nodes (LNs) draining a local inflammatory site. In this study, we investigated neutrophil migration toward LNs in a context of inflammation induced by immunization of BALB/c mice with OVA emulsified in CFA. We demonstrated that neutrophils can enter LNs of OVA/CFA-immunized mice not only via lymphatic vessels but also from blood, across high endothelial venules. By adoptive transfer experiments, we showed that this influx was dependent on an inflammatory-state condition and previous neutrophil stimulation with OVA/anti-OVA immune complexes. Importantly, we have demonstrated that, in the migratory pattern to LNs, neutrophils used L-selectin and P-selectin glycoprotein ligand-1, macrophage-1 Ag and LFA-1 integrins, and CXCR4 to get access across high endothelial venules, whereas macrophage-1 Ag, LFA-1, and CXCR4 were involved in their trafficking through afferent lymphatics. Strikingly, we found that stimulation with immune complexes significantly upregulated the expression of sphingosine-1-phosphate receptor 4 on neutrophils, and that treatment with the sphingosine-1-phosphate agonist FTY720 altered neutrophil LN-homing ability. These findings summarized in this article disclose the molecular pattern that controls neutrophil recruitment to LNs.
ssRNA can interact with dendritic cells (DCs) through binding to TLR7, inducing secretion of proinflammatory cytokines and type I IFN. Triggering TLR7 enhances cross-priming of CD8+ T cells, which requires cross-presentation of exogenous Ag to DCs. However, how TLR triggering can affect Ag cross-presentation is still not clear. Using OVA as an Ag model, we observed that stimulation of TLR7 in DCs by polyuridylic acid (polyU), a synthetic ssRNA analog, generates a strong specific cytotoxic response in C57BL/6 mice. PolyU stimulate CD8α+ DCs to cross-prime naive CD8+ T cells in a type I IFN–dependent fashion. This enhanced cross-priming is accompanied by a higher density of OVA256-264/H-2Kb complexes on CD8α+ DCs treated with polyU, as well as by upregulation of costimulatory molecules and increased secretion of proinflammatory cytokines by DCs. Cross-priming of CD8+ T cells by DCs treated with polyU requires proteasome and Ag translocation to cytosol through the Sec61 channel in DCs. The observed enhancement in OVA cross-presentation with polyU in DCs could be mediated by a limited Ag degradation in endophagosomal compartments and a higher permanence of OVA peptide/MHC class I complexes on DCs. These observations clearly reveal that key steps of Ag processing for cross-presentation can be modulated by TLR ligands, opening new avenues for understanding their mechanisms as adjuvants of the immune response.
Interferon-c priming is involved in the activation of arginase by oligodeoxinucleotides containing CpG motifs in murine macrophages IntroductionIt is well known that unmethylated cytosine guanine motifs contained in bacterial DNA or synthetic oligonucleotides CpG-DNA are powerful immunostimulatory molecules. Initially, CpG-DNA were believed to be predominantly pro-inflammatory molecules, stimulating a T helper 1 (Th1)-like response dominated by the release of interleukin (IL)-12 and interferon-c (IFN-c).1 However, in recent years there has been a spate of interest in some anti-inflammatory properties of CpG-DNA. Pulmonary inflammation decreased in response to lipopolysaccharide (LPS) after systemic exposure to CpG-DNA. 2 CpG-DNA were found to stimulate the production of IL-10, [3][4][5] increase the expression of indoleamine 2,3-dioxygenase (IDO), an enzyme linked to the suppression of T-cellmediated immunity, 6,7 and enhance the shedding of the tumour necrosis factor-a (TNF-a) receptor in macro-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.