Abstract. The conservation of cultural heritage can be affected by different changes in temperature and humidity within architectural spaces, so energy performance and interior microclimate of historic buildings require adaptation to new maintenance and prevention studies. The search for these new investigations brings cultural heritage closer to new digital technologies such as Historic Building Information Modelling (HBIM). In this work, a new interdisciplinary methodology is developed between energy operators and BIM operators, so that a new framework is created to monitor energy parameters through intelligent sensors that measure temperature and humidity in the fully interoperable and semantically enriched 3D model itself. The study's commitment involves solving the interoperability workflow between sensors and the BIM platform, taking advantage of this new interconnectivity. For the study, a methodology applied to the Church of the Sacred Heart of Jesus in Seville was carried out, where from a survey through a georeferenced terrestrial laser scanner with topographic equipment, it is modelled from the point cloud, incorporating the sensors in the HBIM Project. In the workflow, it has been shown that the integration of microclimate data inside churches can be managed directly in the environment of an HBIM-based model and transfer a reverse flow in the process.
Reverse engineering and the creation of digital twins are advantageous for documenting, cataloging, and maintenance control tracking in the cultural heritage field. Digital copies of the objects into Building Information Models (BIM) add cultural interest to every artistic work. Low-cost 3D sensors, particularly structured-light scanners, have evolved towards multiple uses in the entertainment market but also as data acquisition and processing techniques for research purposes. Nowadays, with the development of structured-light data capture technologies, the geometry of objects can be recorded in high-resolution 3D datasets at a very low cost. On this basis, this research addresses a small artifact with geometric singularities that is representative of small museum objects. For this, the precision of two structured-light scanners is compared with that of the photogrammetric technique based on short-range image capture: a high-cost Artec Spider 3D scanner, and the low-cost Revopoint POP 3D scanner. Data capture accuracy is evaluated through a mathematical algorithm and point set segmentation to verify the spatial resolution. In addition, the precision of the 3D model is studied through a vector analysis in a BIM environment, an unprecedented analysis until now. The work evaluates the accuracy of the devices through algorithms and the study of point density at the submillimeter scale. Although the results of the 3D geometry may vary in a morphometric analysis depending on the device records, the results demonstrate similar accuracies in that submillimeter range. Photogrammetry achieved an accuracy of 0.70 mm versus the Artec Spider and 0.57 mm against the Revopoint POP 3D scanner.
Today, plans to protect historic buildings focus on managing architectural heritage sustainably. Technical teams, such as architects and restorers, use massive data acquisition techniques, so an identification mechanism is required to select geometrical similarity patters to support hypothesis that guarantee historical data. Moreover, computational methods are required to understand the role of organic shapes in historic buildings. This paper first describes an extensive review of the literature and then the algorithms and methods to compare and to detect similar geometrical elements and complex patterns in architecture and archaeology. For this purpose, two key aspects are considered: the metric standpoint and historical-graphical features of the 3D models, i.e., composition, techniques, styles, and historical-graphical documentary sources. Research implies testing several methodological lines to know the similarity degree of complex organic shapes in architectural details through statistical analysis, software to assess point clouds, and complex curve analysis. The results have shown that the three procedures can be compared and that the bases of the pillars of both the Cathedral of Seville and the churches in Carmona, Jerez, and Morón are very similar; however, the base of the pillar of the church in Carmona presents scalability variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.