Bioelectronics moves toward designing nanoscale electronic platforms that allow in vivo determinations. Such devices require interfacing complex biomolecular moieties as the sensing units to an electronic platform for signal transduction. Inevitably, a systematic design goes through a bottom-up understanding of the structurally related electrical signatures of the biomolecular circuit, which will ultimately lead us to tailor its electrical properties. Toward this aim, we show here the first example of bioengineered charge transport in a single-protein electrical contact. The results reveal that a single point-site mutation at the docking hydrophobic patch of a Cu-azurin causes minor structural distortion of the protein blue Cu site and a dramatic change in the charge transport regime of the single-protein contact, which goes from the classical Cu-mediated two-step transport in this system to a direct coherent tunneling. Our extensive spectroscopic studies and molecular-dynamics simulations show that the proteins' folding structures are preserved in the single-protein junction. The DFT-computed frontier orbital of the relevant protein segments suggests that the Cu center participation in each protein variant accounts for the different observed charge transport behavior. This work is a direct evidence of charge transport control in a protein backbone through external mutagenesis and a unique nanoscale platform to study structurally related biological electron transfer.
Samples and extracts of foliage from African multipurpose trees were screened for their effects on rumen protozoa and bacteria with a view to predicting their safety as feed supplements and for identifying species with potential antiprotozoal activity. The species tested were Acacia aneura, Chamaecytisus palmensis, Brachychiton populneum, Flindersia maculosa, Sesbania sesban, Leucaena leucocephala and Vernonia amyedalina. Antimicrobial effects were mild except for S. sesban, which was highly toxic to rumen protozoa in vitro, and A. aneura, which was toxic to rumen bacteria. The antiprotozoal factor in S. sesban was apparently associated with the fraction of the plant containing saponins. When S. sesban was fed to sheep, protozoal numbers fell by 60% after 4 d, but the population recovered after a further 10 d. In vitro experiments demonstrated that washed protozoa from later times were no more resistant to S. sesban than on initial exposure, suggesting that other micro-organisms, probably the bacteria, adapted to detoxify the antiprotozoal agent. Thus S. sesban may be useful in suppressing protozoa and thereby improving protein flow from the rumen, but only if the bacterial metabolism of the antiprotozoal factor can be avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.