BackgroundDaily mortality is an important determinant of a vector's ability to transmit pathogens. Original simplifying assumptions in malaria transmission models presume vector mortality is independent of age, infection status and parasite load. Previous studies illustrate conflicting evidence as to the importance of Plasmodium-induced vector mortality, but very few studies to date have considered the effect of infection density on mosquito survival.MethodsA series of three experiments were conducted, each consisting of four cages of 400-1,000 Anopheles stephensi mosquitoes fed on blood infected with different Plasmodium berghei ookinete densities per microlitre of blood. Twice daily the numbers of dead mosquitoes in each group were recorded, and on alternate days a sample of live mosquitoes from each group were dissected to determine parasite density in both midgut and salivary glands.ResultsSurvival analyses indicate that mosquito mortality is both age- and infection intensity-dependent. Mosquitoes experienced an initially high, partly feeding-associated, mortality rate, which declined to a minimum before increasing with mosquito age and parasite intake. As a result, the life expectancy of a mosquito is shown to be dependent on both insect age and the density of Plasmodium infection.ConclusionThese results contribute to understanding in greater detail the processes that influence sporogony in the mosquito, indicate the impact that parasite density could have on malaria transmission dynamics, and have implications for the design, development, and evaluation of transmission-blocking strategies.
BackgroundTrachoma, the worldwide leading infectious cause of blindness, is due to repeated conjunctival infection with Chlamydia trachomatis. The effects of control interventions on population levels of infection and active disease can be promptly measured, but the effects on severe ocular sequelae require long-term monitoring. We present an age-structured mathematical model of trachoma transmission and disease to predict the impact of interventions on the prevalence of blinding trachoma.Methodology/Principal FindingsThe model is based on the concept of multiple reinfections leading to progressive conjunctival scarring, trichiasis, corneal opacity and blindness. It also includes aspects of trachoma natural history, such as an increasing rate of recovery from infection and a decreasing chlamydial load with subsequent infections that depend upon a (presumed) acquired immunity that clears infection with age more rapidly. Parameters were estimated using maximum likelihood by fitting the model to pre-control infection prevalence data from hypo-, meso- and hyperendemic communities from The Gambia and Tanzania. The model reproduces key features of trachoma epidemiology: 1) the age-profile of infection prevalence, which increases to a peak at very young ages and declines at older ages; 2) a shift in this prevalence peak, toward younger ages in higher force of infection environments; 3) a raised overall profile of infection prevalence with higher force of infection; and 4) a rising profile, with age, of the prevalence of the ensuing severe sequelae (trachomatous scarring, trichiasis), as well as estimates of the number of infections that need to occur before these sequelae appear.Conclusions/SignificanceWe present a framework that is sufficiently comprehensive to examine the outcomes of the A (antibiotic) component of the SAFE strategy on disease. The suitability of the model for representing population-level patterns of infection and disease sequelae is discussed in view of the individual processes leading to these patterns.
BackgroundThe World Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in selected African countries. Current control focuses on community-directed treatment with ivermectin (CDTI). In Ghana, persistent transmission has been reported despite long-term control. We present spatial and temporal patterns of onchocerciasis transmission in relation to ivermectin treatment history.Methodology/Principal FindingsHost-seeking and ovipositing blackflies were collected from seven villages in four regions of Ghana with 3–24 years of CDTI at the time of sampling. A total of 16,443 flies was analysed for infection; 5,812 (35.3%) were dissected for parity (26.9% parous). Heads and thoraces of 12,196 flies were dissected for Onchocerca spp. and DNA from 11,122 abdomens was amplified using Onchocerca primers. A total of 463 larvae (0.03 larvae/fly) from 97 (0.6%) infected and 62 (0.4%) infective flies was recorded; 258 abdomens (2.3%) were positive for Onchocerca DNA. Infections (all were O. volvulus) were more likely to be detected in ovipositing flies. Transmission occurred, mostly in the wet season, at Gyankobaa and Bosomase, with transmission potentials of, respectively, 86 and 422 L3/person/month after 3 and 6 years of CDTI. The numbers of L3/1,000 parous flies at these villages were over 100 times the WHO threshold of one L3/1,000 for transmission control. Vector species influenced transmission parameters. At Asubende, the number of L3/1,000 ovipositing flies (1.4, 95% CI = 0–4) also just exceeded the threshold despite extensive vector control and 24 years of ivermectin distribution, but there were no infective larvae in host-seeking flies.Conclusions/SignificanceDespite repeated ivermectin treatment, evidence of O. volvulus transmission was documented in all seven villages and above the WHO threshold in two. Vector species influences transmission through biting and parous rates and vector competence, and should be included in transmission models. Oviposition traps could augment vector collector methods for monitoring and surveillance.
The age-standardised prevalence of blindness and MSVI decreased substantially from 1990 to 2010, although there was a moderate increase in the absolute numbers with blindness or MSVI. Significant subregional and gender disparities exist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.