Bruton's tyrosine kinase (BTK) is essential for B-cell proliferation/differentiation and it is generally believed that its expression and function are limited to bone marrow-derived cells. Here, we report the identification and characterization of p65BTK, a novel isoform abundantly expressed in colon carcinoma cell lines and tumour tissue samples. p65BTK protein is expressed, through heterogeneous nuclear ribonucleoprotein K (hnRNPK)-dependent and internal ribosome entry site-driven translation, from a transcript containing an alternative first exon in the 5′-untranslated region, and is post-transcriptionally regulated, via hnRNPK, by the mitogen-activated protein kinase (MAPK) pathway. p65BTK is endowed with strong transforming activity that depends on active signal-regulated protein kinases-1/2 (ERK1/2) and its inhibition abolishes RAS transforming activity. Accordingly, p65BTK overexpression in colon cancer tissues correlates with ERK1/2 activation. Moreover, p65BTK inhibition affects growth and survival of colon cancer cells. Our data reveal that BTK, via p65BTK expression, is a novel and powerful oncogene acting downstream of the RAS/MAPK pathway and suggest that its targeting may be a promising therapeutic approach.
Before firm adhesion, leukocytes roll slowly along the walls of small venules at velocities ranging from 0.7 to 36% of mean blood flow velocity. To investigate the nature of the adhesive process underlying leukocyte rolling, synthetic (dextran sulfate) and naturally occurring sulfated polysaccharides (heparin, chondroitin sulfates, keratan sulfate, and heparan sulfate) were infused via glass micropipettes into the lumen of small venules (20-60 microns diam) of the rabbit mesentery. Leukocyte rolling was observed and quantified using both transmitted light and incident fluorescence intravital microscopy. Rolling leukocytes accounted for 27-80% of total leukocyte flux, exhibiting a wide range of individual velocities (0.01-0.84 mm/s) with a mean value of 4% of centerline velocity. Dextran sulfate (Mr 500,000) inhibited leukocyte rolling very effectively [half-effective concentration (ED50) approximately 10 micrograms/ml] and was able to almost completely abolish rolling at 500 micrograms/ml. Heparin (ED50 approximately 50 micrograms/ml), chondroitin 6-sulfate C (ED50 approximately 500 micrograms/ml), and heparan sulfate (ED50 approximately 5 mg/ml) also reduced leukocyte rolling. At 5 mg/ml, chondroitin 4-sulfate B (dermatan sulfate) was marginally effective, but chondroitin 4-sulfate A and keratan sulfate were ineffective. The present data suggest that an adhesion receptor-ligand system distinct from the leukocyte integrins may be underlying transient leukocyte adhesion (rolling). Endothelial glycoproteins or proteoglycans containing sulfated side chains may be involved in mediating this adhesive process.
The opening of DNA double strands is extremely relevant to several biological functions, such as replication and transcription or binding of specific proteins. Such opening phenomenon is particularly sensitive to the aqueous solvent conditions in which the DNA molecule is dispersed, as it can be observed by considering the classical dependence of DNA melting temperature on pH and salt concentration. In the present work, we report a single-molecule study of the stability of DNA against denaturation when subjected to changes in solvent. We investigated the appearance of DNA instability under specific external applied force and imposed twist values, which was revealed by an increase in the temporal fluctuations in the DNA extension. These fluctuations occur in the presence of a continuous interval of equilibrium states, ranging from a plectonemic state to a state characterized by denaturation bubbles. In particular, we observe the fluctuations only around a characteristic force value. Moreover, this characteristic force is demonstrated to be notably sensitive to variations in the pH and ionic strength. Finally, an extension of a theoretical model of plectoneme formation is used to estimate the average denaturation energy, which is found to be linearly correlated to the melting temperature of the DNA double strands.
Genetic modification of cells and animals is an invaluable tool
Metronomic chemotherapy treatment (mCHT) refers to the chronic administration of low doses chemotherapy that can sustain prolonged, and active plasma levels of drugs, producing favorable tolerability and it is a new promising therapeutic approach in solid and in hematologic tumors. mCHT has not only a direct effect on tumor cells, but also an action on cell microenvironment, by inhibiting tumor angiogenesis, or promoting immune response and for these reasons can be considered a multi-target therapy itself. Here we review the state of the art of mCHT use in some classical tumour types, such as breast and no small cell lung cancer (NSCLC), see what is new regarding most recent data in different cancer types, such as glioblastoma (GBL) and acute myeloid leukemia (AML), and new drugs with potential metronomic administration. Finally, a look at the strategic use of mCHT in the context of health emergencies, or in low –and middle-income countries (LMICs), where access to adequate healthcare is often not easy, is mandatory, as we always need to bear in in mind that equity in care must be a compulsory part of our medical work and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.