Four medicinal plants--Tecoma stans, Ligusticum porteri, Monarda austromontana, and Poliomintha longiflora, which are distributed in tropical and subtropical countries of the American continent--are widely used in folk medicine to treat diseases such as diarrhea and dysentery. In addition, T. stans and P. longiflora are extensively used as hypoglycemic agents, and M. austromontana and P. longiflora are used as condiments. The plants were collected, identified, dried, and pulverized. Solvent extraction was prepared by maceration of the plant samples, and the phytochemical composition of the extracts was determined by using standard analysis procedures. Phytochemical analysis showed the presence of triterpenoids/steroids, flavonoids, and phenols/tannins and, in L. porteri, traces of alkaloids. After the elimination of solvents in vacuo, the extracts were administrated to Drosophila larvae to test their toxicity and genotoxicity. Third instar larvae were chronically fed with the phytoextracts. The extract from L. porteri was toxic, whereas those from T. stans, P. longiflora, and M. austromontana were not. Genotoxic activities of the 4 plants were investigated by using the wing-spot assay of D. melanogaster. Mitomycin C was used as a positive control. No statistically significant increase was observed between treated sample series and a concurrent negative (water) or solvent control sample series.
Emetine is one of the two active ingredients of syrup of ipecac which is used medicinally as antiparasitic and emetic, however little is known about its genotoxic activity. The goal of this study was to determine whether and how emetine and/or its metabolites might produce mitotic recombination using the in vivo Drosophila w/w+ eye somatic assay. A standard strain (which expresses basal levels of cytochrome P450 enzymes) and an insecticide-resistant strain (which constitutively over-expresses P450 genes) were employed. The results showed that emetine and/or its metabolites are active in the assay and that the genotoxic potential is significantly influenced in the presence of higher than normal concentrations of P450.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.