Long-term memory formation consists of multiple phases. A new memory is initially labile and sensitive to disruption by a variety of interfering events or agents. To become stable, this new memory undergoes a process known as consolidation, which, in the case of declarative memories, occurs within the medial temporal lobes and requires gene expression. When recalled, memories re-enter a new phase of vulnerability and seem to require a reconsolidation process in order to be maintained. Here we show that consolidation but not reconsolidation of inhibitory avoidance memory requires the expression of the transcription factor CCAAT enhancer binding protein beta (C/EBPbeta) in the hippocampus. Furthermore, in the same region, de novo protein synthesis is not essential for memory reconsolidation. C/EBPbeta is an evolutionarily conserved genetic marker that has a selective role in the consolidation of new but not reactivated memories in the hippocampus.
Learning of new information is transformed into long-lasting memory through a process known as consolidation, which requires protein synthesis. Classical theory held that once consolidated, memory was insensitive to disruption. However, old memories that are insensitive to protein synthesis inhibitors can become vulnerable if they are recalled (reactivated). These findings led to a new hypothesis that when an old memory is reactivated, it again becomes labile and, similar to a newly formed memory, requires a process of reconsolidation in order to be maintained. Here, we show that the requirement for protein synthesis of a reactivated memory is evident only when the memory is recent. In fact, memory vulnerability decreases as the time between the original training and the recall increases.
In human addicts, craving and relapse are frequently evoked by the recall of memories connected to a drug experience. Established memories can become labile if recalled and can then be disrupted by several interfering events and pharmacological treatments, including inhibition of protein synthesis. Thus, reactivation of mnemonic traces provides an opportunity for disrupting memories that contribute to pathological states. Here, we tested whether the memory of a drug experience can be weakened by inhibiting protein synthesis after the reactivation of its trace. We found that an established morphine conditioned place preference (mCPP) was persistently disrupted if protein synthesis was blocked by either anisomycin or cycloheximide after the representation of a conditioning session. Unlike other types of memories, an established mCPP did not become labile after contextual recall, but required the concomitant re-experience of both the conditioning context and the drug. An established mCPP was disrupted after the conditioning session if protein synthesis was blocked selectively in the hippocampus, basolateral amygdala, or nucleus accumbens but not in the ventral tegmental area. This disruption seems to be permanent, because the preference did not return after further conditioning. Thus, established memories induced by a drug of abuse can be persistently disrupted after reactivation of the conditioning experience.
Abnormalities of genomic methylation patterns are lethal or cause disease, but the cues that normally designate CpG dinucleotides for methylation are poorly understood. We have developed a new method of methylation profiling that has single-CpG resolution and can address the methylation status of repeated sequences. We have used this method to determine the methylation status of >275 million CpG sites in human and mouse DNA from breast and brain tissues. Methylation density at most sequences was found to increase linearly with CpG density and to fall sharply at very high CpG densities, but transposons remained densely methylated even at higher CpG densities. The presence of histone H2A.Z and histone H3 di-or trimethylated at lysine 4 correlated strongly with unmethylated DNA and occurred primarily at promoter regions. We conclude that methylation is the default state of most CpG dinucleotides in the mammalian genome and that a combination of local dinucleotide frequencies, the interaction of repeated sequences, and the presence or absence of histone variants or modifications shields a population of CpG sites (most of which are in and around promoters) from DNA methyltransferases that lack intrinsic sequence specificity.
Advanced paternal age (APA) has been shown to be a significant risk factor in the offspring for neurodevelopmental psychiatric disorders, such as schizophrenia and autism spectrum disorders. During aging, de novo mutations accumulate in the male germline and are frequently transmitted to the offspring with deleterious effects. In addition, DNA methylation during spermatogenesis is an active process, which is susceptible to errors that can be propagated to subsequent generations. Here we test the hypothesis that the integrity of germline DNA methylation is compromised during the aging process. A genome-wide DNA methylation screen comparing sperm from young and old mice revealed a significant loss of methylation in the older mice in regions associated with transcriptional regulation. The offspring of older fathers had reduced exploratory and startle behaviors and exhibited similar brain DNA methylation abnormalities as observed in the paternal sperm. Offspring from old fathers also had transcriptional dysregulation of developmental genes implicated in autism and schizophrenia. Our findings demonstrate that DNA methylation abnormalities arising in the sperm of old fathers are a plausible mechanism to explain some of the risks that APA poses to resulting offspring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.