Recent developments in optical systems (isotope-selective non-dispersive infrared spectrometry) for breath testing have provided a robust, low-cost option for undertaking (13)C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment, US$15,000-25,000, is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare conventional mass spectrometric methods with the breath test analyser will be presented. In combination with simple (13)C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This enables assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For global understanding of the effect of agricultural practices on the carbon cycle, data are required from a range of cropping systems and agro-ecological zones. The method and the approach described will enable collection of hard data within a reasonable time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.