Oligocene successions in the North Alpine Foreland Basin (NAFB) and the Western Carpathians reflect Paratethys-wide paleogeographic changes, which also control their petroleum potential. Whereas these rocks have been studied in detail in both areas, the transition zone is still under-researched. In order to fill this gap, the Oligocene succession in the Waschberg Zone, comprising the Ottenthal Formation (NP21–23) and the overlying Thomasl Formation (NP23–24) has been studied using outcrop (Waldweg section) and borehole samples (Thomasl, Poysdorf) and a multidisciplinary approach. The Ottenthal Formation is subdivided from base to top into marls and shales (Ottenthal Mbr.), diatomaceous shales (Galgenberg Mbr.) and marlstones (Dynow Mbr.). Biogenic silica contents, determined using atomic absorption spectroscopy, reach 30 wt. % in the carbonate-free Galgenberg Member, but also in the Dynow Members, which is characterized by upward decreasing productivity of calcareous nannoplankton. Close lithological relations exist with the Oligocene succession in the NAFB, but diatoms are largely missing in the latter. Organic matter contents are surprisingly low in the Ottenthal and Thomasl formations in the Waldweg section, which therefore are poor hydrocarbon source rocks. In contrast, the Thomasl Formation, encountered in the Thomasl and Poysdorf boreholes, holds a fair to good hydrocarbon potential (~ 2.2–2.5 wt. % TOC; type III and type II kerogen) and may generate 1.0 to 1.6 tons of hydrocarbons/m2. Obviously TOC contents of borehole samples are significantly higher than in outcrop samples. Because of severe indications of weathering (e.g., presence of gypsum and jarosite), a detrimental effect of weathering on the samples from the Waldweg section cannot be excluded. Biomarker data suggest a nearshore depositional environment with changing oxygen-availability and salinity. Vitrinite reflectance measurements show that the investigated sections are thermally immature.
Alluvial fans, valley fills and debris cones represent economically significant, natural aggregate resources in the alpine regions of Austria. Due to continual erosion they constitute renewable sources of sand and gravel. However, knowledge of their petrographic properties and resulting aggregate quality is scant. An automated evaluation method was developed to estimate petrographic characteristics and predict resource suitability. This method makes use of the fact that the properties of a gravel deposit depend on the morphology and geology of the provenance area. Area percentages of geological units in the source area were expected to mirror the litho-spectrum of the gravel resource. Petrographic analysis of 13 field samples shows that this is indeed the case. Discrepancies amount to 0–10%; larger deviations occur for grain size fractions <2 mm in the presence of soft rock types such as mica-schist or paragneiss. Forecasts of aggregate quality on the basis of lithological composition and grain size characteristics were compared to operational data of five gravel pits. The actual usage of the material agrees with predictions in four out of the five cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.