The basis for communication between nerve cells lies in the process of exocytosis, the fusion of neurotransmitter filled vesicles with the cell membrane resulting in release of the signaling molecules. Even though much is known about this process, the extent that the vesicles are emptied upon fusion is a topic that is being debated. We have analyzed amperometric peaks corresponding to release at PC12 cells and find stable plateau currents during the decay of peaks, indicating closing of the vesicle after incomplete release of its content. Using lipid incubations to alter the amount of transmitter released we were able to estimate the initial vesicular content, and from that, the fraction of release. We propose a process for most exocytosis events where the vesicle partially opens to release transmitter and then closes directly again, leaving the possibility for regulation of transmission within events.
Thin-film platinum ultramicroelectrode arrays (MEAs) with subcellular microelectrodes were developed for the spatial measurement of neurotransmitter release across single cells or clusters of single cells. MEAs consisting of 16, 25, and 36 square ultramicroelectrodes with respective widths of 4, 3, and 2 μm were fabricated on glass substrates by photolithography, thin-film deposition, and reactive ion etching. The electrodes in each MEA are tightly defined in a 30 μm × 30 μm square, which is potentially useful to measure exocytosis across a single cell or clusters of single cells. These MEAs have been characterized with scanning electron microscopy and cyclic voltammetry and show excellent stability and reproducibility. Culturing PC12 cells on top of the MEAs has been achieved by modifying the array with a poly(dimethylsiloxane) chamber and coating a thin layer of collagen IV on top of the electrode surface. The electrochemical response to dopamine has been characterized after coating the surface with the cell-adhering molecules and then with cells attached. Amperometric detection demonstrates that individual exocytotic events can be recorded at these arrays with spatial resolution for dynamic electrochemical measurements near 2 μm. In contrast to previous single-cell experiments, the effect of dopaminergic drugs on imaging single vesicle exocytotic release from PC12 cell clusters is presented at cell clusters incubated with the dopamine precursor and Parkinson's therapy agent, L-3,4-dihydroxyphenylalanine, and at cell clusters incubated with the vesicular monoamine transport inhibitor, reserpine. The results of electrochemical imaging demonstrate that the drug effect on PC12 cell clusters is consistent with previous single-cell experiments.
Fabrication of carbon microelectrode arrays, with up to 15 electrodes in total tips as small as 10 to 50 μm, is presented. The support structures of microelectrodes were obtained by pulling multiple quartz capillaries together to form hollow capillary arrays before carbon deposition. Carbon ring microelectrodes were deposited by pyrolysis of acetylene in the lumen of these quartz capillary arrays. Each carbon deposited array tip was filled with epoxy, followed by beveling of the tip of the array to form a deposited carbon-ring microelectrode array (CRMA). Both the number of the microelectrodes in the array and the tip size are independently tunable. These CRMAs have been characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, and electrogenerated chemiluminescence. Additionally, the electrochemical properties were investigated with steady-state voltammetry. In order to demonstrate the utility of these fabricated microelectrodes in neurochemistry, CRMAs containing eight microring electrodes were used for electrochemical monitoring of exocytotic events from single PC12 cells. Subcellular temporal heterogeneities in exocytosis (ie. cold spots vs. hot spots) were successfully detected with the CRMAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.