COVID-19 is a multisystemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The immunopathogenic conditions of the hyperinflammatory response that cause systemic inflammation are extremely linked to its severity. This research sought to review the immunopathological elements that contribute to its progression. This is a systematic review using the PUBMED, LILACS, MEDLINE, and SCIELO databases using articles between May 2020 and July 2022 with the following search terms in conjunction with “AND”: “SARS-CoV-2”; “COVID-19”; “ARDS” and “Cytokine Storm”. The quality appraisal and risk of bias were assessed by the JBI checklists and the Cochrane Collaboration’s RoB 2.0 and ROBINS-I tools, respectively, and the risk of bias for in vitro studies by a pre-defined standard in the literature. The search resulted in 39 articles. The main actors in this response denote SARS-CoV-2 Spike proteins, cellular proteases, leukocytes, cytokines, and proteolytic cascades. The “cytokine storm” itself brings several complications to the host through cytokines such as IL-6 and chemokines (such as CCL2), which influence tissue inflammation through apoptosis and pyroptosis. The hyperinflammatory response causes several unfavorable outcomes in patients, and systemic inflammation caused largely by the dysregulation of the immune response should be controlled for their recovery.
Typhoidal salmonellosis is a global public health problem occurring in developing endemic regions. In Brazil, cases are mostly registered in the North and Northeast regions. Molecular characterization of the strains is important to understand the epidemiology of disease infections and to design control strategies. The present study retrospectively evaluates the genotyping features of sporadic and outbreak-related Salmonella Typhi isolates from the Brazilian North region. Bacterial isolates were recovered from blood and a rectal swab of patients in the states of Acre and Pará, Brazilian North region, in the period of 1995 to 2013, and were submitted to genotyping by applying Multilocus sequence typing (MLST) and Pulsed Field Gel Electrophoresis (PFGE) reference methods. MLST genotyping revealed the presence of epidemic clones ST1 and ST2, and 20 pulsotypes were identified by PFGE, including four distinct clusters (A–D), and six subclusters (A1–D1) with indistinguishable strains in different periods and locations. To conclude, the obtained data demonstrates the temporal stability, adaptation, and transmission of outbreak-related and sporadic S. Typhi strains over time, contributing to the transmission chain in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.