In the last decade, a new parasite that causes severe losses has been detected in farmed turbot Psetta maxima (L.), in north-western Spain. The parasite was classified as a myxosporean and named Enteromyxum scophthalmi. The aim of this study was to characterize the main histological changes that occur in E. scophthalmi-infected turbot. The parasite provoked catarrhal enteritis, and the intensity of the lesions was correlated with the progression of the infection and with the development of the parasite. Infected fish were classified into 3 groups, according to the lesional degree they showed (slight, moderate and severe infections). In fish with slight infections, early parasitic stages were observed populating the epithelial lining of the digestive tract, without eliciting an evident host response. As the disease progressed, catarrhal enteritis was observed, the digestive epithelium showed a typical scalloped shape and the number of both goblet and rodlet cells was increased. Fish with severe infections suffered desquamation of the epithelium, with the subsequent release of parasitic forms to the lumen. The dislodged enterocytes underwent anoikis, a mode of apoptosis triggered by the loss of anchorage, which might facilitate spreading of the parasite. Lymphohaematopoietic depletion was also observed, mainly in head kidney and spleen, which could contribute to the high virulence of this parasite.
BackgroundEnteromyxosis caused by the intestinal myxozoan parasite Enteromyxum scophthalmi is a serious threat for turbot (Scophthalmus maximus, L.) aquaculture, causing severe catarrhal enteritis leading to a cachectic syndrome, with no therapeutic options available. There are still many aspects of host-parasite interaction and disease pathogenesis that are yet to be elucidated, and to date, no analysis of the transcriptomic changes induced by E. scophthalmi in turbot organs has been conducted. In this study, RNA-seq technology was applied to head kidney, spleen and pyloric caeca of severely infected turbot with the aim of furthering our understanding of the pathogenetic mechanisms and turbot immune response against enteromyxosis.ResultsA huge amount of information was generated with more than 23,000 identified genes in the three organs, amongst which 4,762 were differently expressed (DE) between infected and control fish. Associate gene functions were studied based on gene ontology terms and available literature, and the most interesting DE genes were classified into five categories: 1) immune and defence response; 2) apoptosis and cell proliferation; 3) iron metabolism and erythropoiesis; 4) cytoskeleton and extracellular matrix and 5) metabolism and digestive function. The analysis of down-regulated genes of the first category revealed evidences of a connexion failure between innate and adaptive immune response, especially represented by a high number of DE interferon-related genes in the three organs. Furthermore, we found an intense activation of local immune response at intestinal level that appeared exacerbated, whereas in kidney and spleen genes involved in adaptive immune response were mainly down-regulated. The apoptotic machinery was only clearly activated in pyloric caeca, while kidney and spleen showed a marked depression of genes related to erythropoiesis, probably related to disorders in iron homeostasis. The genetic signature of the causes and consequences of cachexia was also demonstrated by the down-regulation of the genes encoding structural proteins and those involved in the digestive metabolism.ConclusionsThis transcriptomic study has enabled us to gain a better understanding of the pathogenesis of enteromyxosis and identify a large number of DE target genes that bring us closer to the development of strategies designed to effectively combat this pathogen.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1149) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.