The development Open Source Software fundamentally depends on the participation and commitment of volunteer developers to progress on a particular task. Several works have presented strategies to increase the on-boarding and engagement of new contributors, but little is known on how these diverse groups of developers self-organise to work together. To understand this, one must consider that, on one hand, platforms like GitHub provide a virtually unlimited development framework: any number of actors can potentially join to contribute in a decentralised, distributed, remote, and asynchronous manner. On the other, however, it seems reasonable that some sort of hierarchy and division of labour must be in place to meet human biological and cognitive limits, and also to achieve some level of efficiency. These latter features (hierarchy and division of labour) should translate into detectable structural arrangements when projects are represented as developer-file bipartite networks. Thus, in this paper we analyse a set of popular open source projects from GitHub, placing the accent on three key properties: nestedness, modularity and in-block nestedness –which typify the emergence of heterogeneities among contributors, the emergence of subgroups of developers working on specific subgroups of files, and a mixture of the two previous, respectively. These analyses show that indeed projects evolve into internally organised blocks. Furthermore, the distribution of sizes of such blocks is bounded, connecting our results to the celebrated Dunbar number both in off- and on-line environments. Our conclusions create a link between bio-cognitive constraints, group formation and online working environments, opening up a rich scenario for future research on (online) work team assembly (e.g. size, composition, and formation). From a complex network perspective, our results pave the way for the study of time-resolved datasets, and the design of suitable models that can mimic the growth and evolution of OSS projects.
Human cognitive abilities are limited resources. Today, in the age of cheap information—cheap to produce, to manipulate, to disseminate—this cognitive bottleneck translates into hypercompetition for rewarding outcomes among actors. These incentives push actors to mutualistically interact with specific memes, seeking the virality of their messages. In turn, memes’ chances to persist and spread are subject to changes in the communication environment. In spite of all this complexity, here we show that the underlying architecture of empirical actor-meme information ecosystems evolves into recurring emergent patterns. We then propose an ecology-inspired modelling framework, bringing to light the precise mechanisms causing the observed flexible structural reorganisation. The model predicts—and the data confirm—that users’ struggle for visibility induces a re-equilibration of the network’s mesoscale towards self-similar nested arrangements. Our final microscale insights suggest that flexibility at the structural level is not mirrored at the dynamical one.
Experimental studies on isolated cardiomyocytes from different animal species and human hearts have demonstrated that there are regional differences in the Ca2+ release, Ca2+ decay and sarcomere deformation. Local deformation heterogeneities can occur due to a combination of factors: regional/local differences in Ca2+ release and/or re-uptake, intra-cellular material properties, sarcomere proteins and distribution of the intracellular organelles. To investigate the possible causes of these heterogeneities, we developed a two-dimensional finite-element electromechanical model of a cardiomyocyte that takes into account the experimentally measured local deformation and cytosolic [Ca2+] to locally define the different variables of the constitutive equations describing the electro/mechanical behaviour of the cell. Then, the model was individualised to three different rat cardiac cells. The local [Ca2+] transients were used to define the [Ca2+]-dependent activation functions. The cell-specific local Young’s moduli were estimated by solving an inverse problem, minimizing the error between the measured and simulated local deformations along the longitudinal axis of the cell. We found that heterogeneities in the deformation during contraction were determined mainly by the local elasticity rather than the local amount of Ca2+, while in the relaxation phase deformation was mainly influenced by Ca2+ re-uptake. Our electromechanical model was able to successfully estimate the local elasticity along the longitudinal direction in three different cells. In conclusion, our proposed model seems to be a good approximation to assess the heterogeneous intracellular mechanical properties to help in the understanding of the underlying mechanisms of cardiomyocyte dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.