The influence of Pb(II) ions on the properties of the free radicals formed in humic acids and fulvic acids was investigated by electron paramagnetic resonance spectroscopy. It is shown that, in both humic acid and fulvic acid, Pb(II) ions shift the radical formation equilibrium by increasing the concentration of stable radicals. Moreover, in both humic acid and fulvic acid, Pb(II) ions cause a characteristic lowering of the stable radicals' g-values to g = 2.0010, which is below the free electron g-value. This effect is unique for Pb ions and is not observed with other dications. Gallic acid (3,4,5-trihydroxybenzoic acid) and tannic acid are shown to be appropriate models for the free radical properties, i.e., g-values, Pb effect, pH dependence, of humic and fulvic acid, respectively. On the basis of density functional theory calculations for the model system (gallic acid-Pb), the observed characteristic g-value reduction upon Pb binding is attributed to the delocalization of the unpaired spin density onto the Pb atom. The present data reveal a novel environmental role of Pb(II) ions on the formation and stabilization of free radicals in natural organic matter.
The aim of the research was to compare the effect of two types of organic sorbents-humic acid (HA) and biochar (BC)-in sorption-desorption processes of different polar pesticides, which residues are commonly present in arable soils and are potentially harmful for the environment. It also aims to advance the understanding of behavior of both ionizable and nonionizable pesticides in the presence of BC and HA in soils. Materials and methods Three different classes of pesticides were investigated: carbamates (carbaryl and carbofuran), phenoxyacetic acids (2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA)), and aniline derivatives (metolachlor). Investigated humic acid was extracted by Shnitzer's method from topsoil horizon of arable Gleyic Phaeozem. Biochar was produced from wheat straw in gasification process at 550°C, remaining 30 s in the reactor. To obtain the experimental goal structural properties of both sorbents were determined and sorption-desorption experiments conducted. To the investigated organic matter samples (HA or BC), 10 or 15 mg L −1 pesticide solutions in 10 mM CaCl 2 were added and the mixtures were shaken for 24 h. Afterwards, the samples were centrifuged and supernatants analyzed by LC-MS/MS for the pesticide content. Analogous experiment was performed for desorption studies (samples refilled with 10 mM CaCl 2). Results and discussion Humic acids exhibited strong affinity for the ionic substances, for which high-percentage uptake (74.6 and 67.9% initial dose of 2,4-D and MCPA, respectively) was obtained. Retention of nonionic carbamates on HA was much weaker (35.4% of carbofuran and 10.2% of carbaryl sorbed). Sorption of carbamates to BC was significantly reduced (76.4-84.3%) by the alkaline hydrolysis. Metolachlor was bound comparably strong both by HA (72.9%) and BC (70.2%), although different mechanisms governed its sorption. Noticeable desorption occurred only in the case of 2,4-D bound to HA (over 50%), whereas other studied compounds were released from HA within the range of 4.4-10.8% of the dose sorbed. Oppositely to HA, desorption of all studied pesticides from BC was completely inhibited, except for 2,4-D (3.7% desorbed). Conclusions Investigated humic acid has high affinity to polar, ionic pesticides of high water solubility, which are sorbed via specific interactions with HA functional groups. Studied biochar, due to its moderately hydrophobic character, preferentially attracts nonionic pesticides of relatively high logP values and low water solubility. Hydrophobic bonding is postulated as a main mechanism of their attraction to BC. Besides sorbent structural properties, pH is the main factor governing sorption equilibria in the studied mixtures.
Titanium(IV) oxo-clusters of the general formula (Ti4O2(OiBu)10(O2CR’)2) (R’ = C13H9 (1), PhCl (2), PhNO2 (3)) were studied in order to estimate their potential photoactivity. The structure of the resulting tetranuclear Ti(IV) oxo-complexes was then determined via single crystal X-ray diffraction, infrared and Raman spectroscopy, and electron spin resonance (ESR). An analysis of diffuse reflectance spectra (DRS) allowed for the assessment of band gap values of (1)–(3) microcrystalline samples complexes. The use of different carboxylate ligands allowed the band gap of tetranuclear Ti(IV) oxo-clusters to be modulated in the range of 3.6 eV–2.5 eV. Density functional theory (DFT) methods were used to explain the influence of substitutes on band gap and optical activity. Dispersion of (1)–(3) microcrystals in the poly(methyl methacrylate) (PMMA) matrixes enabled the formation of composite materials for which the potential photocatalytic activity was estimated through the study on methylene blue (MB) photodegradation processes in the presence of UV light. The results obtained revealed a significant influence of carboxylate ligands functionalization on the photoactivity of synthesized tetranuclear Ti(IV) oxo-complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.