Purpose-The design of retail backroom storage areas has great impact on in-store operations, customer service level and on store life-cycle costs. Moreover, backroom storage in modern retail grocery stores is critical to several functions, such as acting as a buffer against strong demand lifts yielded by an ever-increasing promotional activity, stocking seasonal peak demand and accommodating e-commerce activities. The purpose of this paper is to propose a framework to design retail backroom storage area. Furthermore, the authors aim to draw attention to the lack of literature on this topic, while clarifying the relationship between this promising research stream and the considerable body of research regarding the design and operations of conventional warehouses, as well as retail in-store operations. Design/methodology/approach-The key literature on backrooms, grocery retail, in-store operations, warehouse design and operations was reviewed. This allowed an understanding of the gap in the literature regarding the design of backrooms. Moreover, a case study methodological approach was conducted in a Portuguese retailer to extend the literature review. Findings-Despite having functions similar to conventional warehouses, backroom storage facilities have particularities that deserve a distinct analysis. Thus, the authors stress these differences and demonstrate how they influence the development of a novel backroom design framework. Originality/value-This paper fills a gap by proposing a framework to design backroom areas. Furthermore, this research may help practitioners to better design backroom areas, since this process currently lacks a formal and standardized procedure.
Essential oils are natural compounds used by humans for scientific purposes due to their wide range of properties. Eugenol is mostly present in clove oil, while pulegone is the main constituent of pennyroyal oil. To guarantee the safe use of eugenol and pulegone for both humans and animals, this study addressed, for the first time, the effects of these compounds, at low doses (chronic toxicity) and high doses (acute toxicity), in laboratory animals. Thirty-five FVB/n female mice were randomly assigned to seven groups (n = 5): group I (control, non-additive diet); group II (2.6 mg of eugenol + 2.6 mg of pulegone); group III (5.2 mg of eugenol + 5.2 mg of pulegone); group IV (7.8 mg of eugenol + 7.8 mg of pulegone); group V (7.8 mg of eugenol); group VI (7.8 mg of pulegone); and group VII (1000 mg of eugenol + 1000 mg of pulegone). The compounds were administered in the food. Groups I to VI were integrated into the chronic toxicity study, lasting 28 days, and group VII was used in the acute toxicity study, lasting 7 days. Animals were monitored to assess their general welfare. Water and food intake, as well as body weight, were recorded. On the 29th day, all animals were euthanized by an overdose of ketamine and xylazine, and a complete necropsy was performed. Blood samples were collected directly from the heart for microhematocrit and serum analysis, as well as for comet assay. Organs were collected, weighed, and fixed in formaldehyde for further histological analysis and enzymatic assay. Eugenol and pulegone induced behavioral changes in the animals, namely in the posture, hair appearance and grooming, and in mental status. These compounds also caused a decrease in the animals’ body weight, as well as in the food and water consumption. A mortality rate of 20% was registered in the acute toxicity group. Both compounds modulated the serum levels of triglycerides and alanine aminotransferase. Eugenol and pulegone induced genetic damage in all animals. Eugenol increased the activity of the CAT enzyme. Both compounds increased the GR enzyme at the highest dose. Moreover, pulegone administered as a single compound increased the activity of the GST enzyme. Histopathological analysis revealed inflammatory infiltrates in the lungs of groups II, III, and IV. The results suggest that eugenol and pulegone may exert beneficial or harmful effects, depending on the dose, and if applied alone or in combination.
Purpose. This study aimed to evaluate the effect of chronic treatment with chaetomellic acid A (CAA) on oxidative stress and renal function in a model of renal mass reduction. Methods. Male Wistar rats were subjected to 5/6 nephrectomy (RMR) or sham-operated (SO). One week after surgery, rats have been divided into four experimental groups: RMR: RMR rats without treatment (n = 14); RMR + CAA: RMR rats treated with CAA (n = 13); SO: SO rats without treatment (n = 13); and SO + CAA: SO rats treated with CAA (n = 13). CAA was intraperitoneally administered in a dose of 0.23 µg/Kg three times a week for six months. Results. RMR was accompanied by a significant reduction in catalase and glutathione reductase (GR) activity (p < 0.05) and a decrease in reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio. CAA administration significantly increased catalase and GR activity (p < 0.05) and increased GSH/GSSG ratio, but no significant difference between the treated and nontreated groups was found in this ratio. No significant differences were found between the RMR groups in any of the parameters of renal function. However, CAA administration slightly improves some parameters of renal function. Conclusions. These data suggest that CAA could attenuate 5/6 RMR-induced oxidative stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.