ObjectiveTo report grade ≥2 overall late rectal and urinary toxicities in patients (pts) with prostate cancer treated by intensity-modulated radiotherapy (IMRT) at 3 dose-levels. Identify predictors of radiation toxicity and report biochemical progression free survival (bPFS).MethodsA total of 277 pts were treated with 70Gy (10.8%), 74Gy (63.9%) and 80 Gy (25.3%) using IMRT without pelvic irradiation were analyzed. Short or long-course androgen deprivation therapy (ADT) was allowed in 46.1% of pts. The toxicity was described using the Common Terminology Criteria for Adverse Events (CTCAE) v4.0 scale. Cox regression models addressed demographics, disease and dosimetry characteristics as potential predictors of late grade ≥2 toxicity after adjusting for other modifying factors.ResultsThe median follow-up was 77 months (range 15; 150). There was no grade ≥4 toxicity. The 5-year cumulative rate of grade ≥2 late rectal and urinary toxicities was 6.3% (95% CI = 3.8%; 10.3%) and 25.3% (95% CI = 19.8%; 31.8%) respectively. In multivariate analysis, only the dose (80Gy vs 74 and 70Gy) was found to increase the risk of rectal toxicity (HR = 2.96 [1.07; 8.20]). For pts receiving 74 Gy, International Prostate Symptom Score (IPSS) at baseline ≥8 (HR = 2.40 [1.08; 5.35]) and dose ≥73Gy delivered in more than 2% of bladder (D2%) were found to be predictors of bladder toxicity (HR = 3.29 [1.36; 7.98]). The 5–year biochemical relapse free survival was 81.0% [74.5%; 86.0%] in the entire population, 97.5% [83.5%; 99.6%] in the low risk group, 84.9% [76.7%; 90.3%] in the intermediate risk group and 66.4% [51.8%; 77.4%] in the high-risk group. D’Amico low (HR = 0.09 [0.01; 0.69]) and intermediate risk groups (HR = 0.50 [0.28; 0.88]) as well as PSA nadir ≥0.2 ng/ml (HR = 1.79 [1.01; 3.21]) were predictive of biochemical relapse.ConclusionsThe rate of late rectal toxicity increased with higher doses, while Dmax ≥74Gy, D2% ≥ 73Gy for bladder wall and baseline IPSS ≥8 increased late urinary toxicity.
a b s t r a c tSensemaking theories help designers understand the cognitive processes of a user when he/she performs a complicated task. This paper introduces a two-step approach of incorporating sensemaking support within the design of health information systems by: (1) modeling the sensemaking process of physicians while performing a task, and (2) identifying software interaction design requirements that support sensemaking based on this model. The two-step approach is presented based on a case study of the tumor contouring clinical task for radiotherapy planning. In the first step of the approach, a contextualized sensemaking model was developed to describe the sensemaking process based on the goal, the workflow and the context of the task. In the second step, based on a research software prototype, an experiment was conducted where three contouring tasks were performed by eight physicians respectively. Four types of navigation interactions and five types of interaction sequence patterns were identified by analyzing the gathered interaction log data from those twenty-four cases. Further in-depth study on each of the navigation interactions and interaction sequence patterns in relation to the contextualized sensemaking model revealed five main areas for design improvements to increase sensemaking support. Outcomes of the case study indicate that the proposed two-step approach was beneficial for gaining a deeper understanding of the sensemaking process during the task, as well as for identifying design requirements for better sensemaking support.
IntroductionUp to 50% of soft tissue sarcoma (STS) patients develop metastases in the course of their disease. Cytotoxic therapy is a standard treatment in this setting but yields average tumour response rates of 25% at first line and ≤10% at later lines. In oligometastatic stage, stereotactic body radiation therapy (SBRT) allows reaching high control rates at treated sites (≥80%) and is potentially equally effective to surgery in term of overall survival. In order to shift the balance towards antitumour immunity by multisite irradiation, radiation could be combined with inhibitors of the immunosuppressive pathways.Methods and analysisSTEREOSARC is a prospective, multicentric, randomised phase II, designed to evaluate the efficacy of SBRT associated with immunotherapy versus SBRT only. Randomisation is performed with a 2:1 ratio within two arms. The primary objective is to evaluate the efficacy, in term of progression-free survival (PFS) rate at 6 months, of immunomodulated stereotactic multisite irradiation in oligometastatic sarcoma patients. The secondary objectives include PFS by immune response criteria, overall survival, quality-of-life evaluation and developing mathematical models of tumour growth and dissemination predictive of oligometastatic versus polymetastatic evolution. Patients will be randomised in two groups: SBRT with atezolizumab and SBRT alone. The total number of included patients should be 103.Trial registrationThe trial is registered on ClinicalTrials.gov (ID: NCT03548428).Ethics and disseminationThis study has been approved by Comité de Protection des Personnes du sud-ouest et outre-mer 4 on 18 October 2019 (Reference CPP2019-09-076-PP) and from National Agency for Medical and Health products Safety (Reference: MEDAECNAT-2019-08-00004_2017-004239-35) on 18 September 2019.The results will be disseminated to patients upon individual request or through media release from scientific meetings. The results will be communicated through scientific meetings and publications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.