BackgroundIncreasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development.ResultsZebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters.ConclusionsTranscript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.
Halogenated agonists for the aryl hydrocarbon receptor (AHR), such as 3,3',4,4',5-pentachlorobiphenyl (PCB126) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause developmental toxicity in fish. AHR dependence of these effects is known for TCDD but only presumed for PCB126, and the AHR-regulated genes involved are known only in part. We defined the role of AHR in regulation of four cytochrome P450 1 (CYP1) genes and the effect of PCB126 on cell cycle genes (i.e., PCNA and cyclin E) in zebra fish (Danio rerio) embryos. Basal and PCB126-induced expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2 was examined over time as well as in relation to cell cycle gene expression and morphological effects of PCB126 in developing zebra fish. The four CYP1 genes differed in the time for maximal basal and induced expression, i.e., CYP1B1 peaked within 2 days postfertilization (dpf), the CYP1Cs around hatching (3 dpf), and CYP1A after hatching (14-21 dpf). These results indicate developmental periods when the CYP1s may play physiological roles. PCB126 (0.3-100nM) caused concentration-dependent CYP1 gene induction (EC50: 1.4-2.7nM, Lowest observed effect concentration [LOEC]: 0.3-1nM) and pericardial edema (EC50: 4.4nM, LOEC: 3nM) in 3-dpf embryos. Blockage of AHR2 translation significantly inhibited these effects of PCB126 and TCDD. PCNA gene expression was reduced by PCB126 in a concentration-dependent manner, suggesting that PCB126 could suppress cell proliferation. Our results indicate that the four CYP1 genes examined are regulated by AHR2 and that the effect of PCB126 on morphology in zebra fish embryos is AHR2 dependent. Moreover, the developmental patterns of expression and induction suggest that CYP1 enzymes could function in normal development and in developmental toxicity of PCB126 in fish embryos.
The cytochrome P4501C (CYP1C) gene subfamily was recently discovered in fish, and zebrafish (Danio rerio) CYP1C1 transcript has been cloned. Here we cloned the paralogous CYP1C2, showing that the amino acid sequence is 78% identical to CYP1C1, and examined gene structure and expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2. Xenobiotic response elements were observed upstream of the coding regions in all four genes. Zebrafish adults and embryos were exposed (24 hours) to 100 nM 3,3',4,4',5-polychlorinated biphenyl (PCB126) or 20 ppm acetone and subsequently held in clean water for 24 hours (adults) or 48 hours (embryos). All adult organs examined (eye, gill, heart, liver, kidney, brain, gut, and gonads) and embryos showed basal expression of the four genes. CYP1A was most strongly expressed in liver, whereas CYP1B1, CYP1C1, and CYP1C2 were most strongly expressed in heart and eye. CYP1B1 and the CYP1C genes showed an expression pattern similar to one another and to mammalian CYP1B1. In embryos CYP1C1 and CYP1C2 tended to have a higher basal expression than CYP1A and CYP1B1. PCB126 induced CYP1A in all organs, and CYP1B1 and CYP1C1 in all organs except gonads, or gonads and brain, respectively. CYP1C2 induction was significant only in the liver. However, in embryos all four genes were induced strongly by PCB126. The results are consistent with CYP1C1 and CYP1C2, as well as CYP1A and CYP1B1, being regulated by the aryl hydrocarbon receptor. While CYP1A may have a protective role against AHR agonists in liver and gut, CYP1B1, CYP1C1, and CYP1C2 may also play endogenous roles in eye and heart and possibly other organs, as well as during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.