Satiscing is a hugely inuential model of boundedly rational choice, yet it cannot be easily tested using standard choice data. We develop necessary and sucient conditions for stochastic choice data to be consistent with satiscing, assuming that preferences are xed, but search order may change randomly. The model predicts that stochastic choice can only occur amongst elements that are always chosen, while all other choices must be consistent with standard utility maximization. Adding the assumption that the probability distribution over search orders is the same for all choice sets makes the satiscing model a subset of the class of random utility models.
The random utility model (RUM, McFadden and Richter (1990)) has been the standard tool to describe the behavior of a population of decision makers. RUM assumes that decision makers behave as if they maximize a rational preference over a choice set. This assumption may fail when consideration of all alternatives is costly. We provide a theoretical and statistical framework that unifies well‐known models of random (limited) consideration and generalizes them to allow for preference heterogeneity. We apply this methodology in a novel stochastic choice data set that we collected in a large‐scale online experiment. Our data set is unique since it exhibits both choice set and (attention) frame variation. We run a statistical survival race between competing models of random consideration and RUM. We find that RUM cannot explain the population behavior. In contrast, we cannot reject the hypothesis that decision makers behave according to the logit attention model (Brady and Rehbeck (2016)).
We study population behavior when choice is hard because considering alternatives is costly. To simplify their choice problem, individuals may pay attention to only a subset of available alternatives. We design and implement a novel online experiment that exogenously varies choice sets and consideration costs for a large sample of individuals. We provide a theoretical and statistical framework that allows us to test random consideration at the population level. Within this framework, we compare competing models of random consideration. We find that the standard random utility model fails to explain the population behavior. However, our results suggest that a model of random consideration with logit attention and heterogeneous preferences provides a good explanation for the population behavior. Finally, we find that the random consideration rule that subjects use is different for different consideration costs while preferences are not. We observe that the higher the consideration cost the further behavior is from the full-consideration benchmark, which supports the hypothesis that hard choices have a substantial negative impact on welfare via limited consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.