A consensus genetic map of chickpea (Cicer arietinum L.) was constructed by merging linkage maps from 10 different populations, using STMS (Sequence-tagged Microsatellite Sites) as bridging markers. These populations derived from five wide crosses (C. arietinum 9 Cicer reticulatum) and five narrow crosses (Desi 9 Kabuli types) were previously used for mapping genes for several agronomic traits such as ascochyta blight, fusarium wilt, rust resistance, seed weight, flowering time and days to flower. The integrated map obtained from wide crosses consists of 555 loci including, among other markers, 135 STMSs and 33 cross-genome markers distributed on eight linkage groups and covers 652.67 cM. The map obtained from narrow crosses comprises 99 STMSs, 3 SCARs, 1 ASAP, fusarium resistance gene, 5 morphological traits as well as RAPD and ISSR markers distributed on eight linkage groups covering 426.99 cM. Comparison between maps from wide and narrow crosses reflects a general coincidence, Electronic supplementary material The online version of this article (
Two recombinant inbred line (RIL) populations derived from intraspecific crosses with a common parental line (JG62) were employed to develop a chickpea genetic map. Molecular markers, flower colour, double podding, seed coat thickness and resistance to fusarium wilt race 0 (FOC-0) were included in the study. Joint segregation analysis involved a total of 160 markers and 159 RILs. Ten linkage groups (LGs) were obtained that included morphological markers and 134 molecular markers (3 ISSRs, 13 STMSs and 118 RAPDs). Flower colour (B/b) and seed coat thickness (Tt/tt) appeared to be linked to STMS (GAA47). The single-/double-podding locus was located on LG9 jointly with two RAPD markers and STMS TA80. LG3 included a gene for resistance to FOC-0 (Foc0(1)/foc0(1)) flanked by RAPD marker OPJ20(600) and STMS marker TR59. The association of this LG with FOC-0 resistance was confirmed by QTL analysis in the CA2139 x JG62 RIL population where two genes were involved in the resistance reaction. The STMS markers enabled comparison of LGs with preceding maps.
Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM−1 and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Córdoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260.
Quantitative traits, seed size, yield and days to flowering were studied in a chickpea intraspecific recombinant inbred line (RIL) population (F 6:7 ) derived from a Kabuli  Desi cross. The population was evaluated in two locations over 2 years. Days to flowering was also evaluated in the greenhouse under shortday conditions. Seed size was the most heritable trait (0.90), followed by days to flowering (0.36) and yield (0.14). Negative and significant correlation was found between yield and seed size in the second year where environmental homogeneity was tested by analysing the controls included in each assay. During the first year, the environment was not considered homogeneous for yield in either location. Quantitative trait loci (QTLs) for the three characters were detected in linkage group (LG) 4. In relation to seed size, two QTLs were located in LG4 (QTL SW1 ) and LG8 (QTL SW2 ). QTL SW1 accounted 20.3% of the total phenotypic variation and QTL SW2 explained 10.1%. A QTL for yield (QTL YD ) was located in LG4 explaining around 13% of variation. QTL YD might be pleiotropic with QTL SW1 . For days to flowering, a QTL (QTL DF1 ) was located in LG4 for all environments analysed explaining around 20% of variation. QTL DF1 was closely linked to QTL SW1 and QTL YD in LG4.Genetics of seed size, yield and flowering in chickpea M.J. Cobos et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.