Gram-negative bacteria shed extracellular outer membrane vesicles (OMVs) during their normal growth both in vitro and in vivo. OMVs are spherical, bilayered membrane nanostructures that contain many components found within the parent bacterium. Until recently, OMVs were dismissed as a by-product of bacterial growth; however, findings within the past decade have revealed that both pathogenic and commensal bacteria can use OMVs to manipulate the host immune response. In this Review, we describe the mechanisms through which OMVs induce host pathology or immune tolerance, and we discuss the development of OMVs as innovative nanotechnologies.
The intracellular innate immune receptor NOD1 detects Gram-negative bacterial peptidoglycan (PG) to induce autophagy and inflammatory responses in host cells. To date, the intracellular compartment in which PG is detected by NOD1 and whether NOD1 directly interacts with PG are two questions that remain to be resolved. To address this, we used outer membrane vesicles (OMVs) from pathogenic bacteria as a physiological mechanism to deliver PG into the host cell cytosol. We report that OMVs induced autophagosome formation and inflammatory IL-8 responses in epithelial cells in a NOD1- and RIP2-dependent manner. PG contained within OMVs colocalized with both NOD1 and RIP2 in EEA1-positive early endosomes. Further, we provide evidence for direct interactions between NOD1 and PG. Collectively, these findings demonstrate that NOD1 detects PG within early endosomes, thereby promoting RIP2-dependent autophagy and inflammatory signaling in response to bacterial infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.