Opinion mining techniques, investigating if text is expressing a positive or negative opinion, continuously gain in popularity, attracting the attention of many scientists from different disciplines. Specific use cases, however, where the expressed opinion is indisputably positive or negative, render such solutions obsolete and emphasize the need for a more in-depth analysis of the available text. Emotion analysis is a solution to this problem, but the multi-dimensional elements of the expressed emotions in text along with the complexity of the features that allow their identification pose a significant challenge. Machine learning solutions fail to achieve a high accuracy, mainly due to the limited availability of annotated training datasets, and the bias introduced to the annotations by the personal interpretations of emotions from individuals. A hybrid rule-based algorithm that allows the acquisition of a dataset that is annotated with regard to the Plutchik’s eight basic emotions is proposed in this paper. Emoji, keywords and semantic relationships are used in order to identify in an objective and unbiased way the emotion expressed in a short phrase or text. The acquired datasets are used to train machine learning classification models. The accuracy of the models and the parameters that affect it are presented in length through an experimental analysis. The most accurate model is selected and offered through an API to tackle the emotion detection in social media posts.
Abstract-We present a novel platform for the interactive visualization of very large graphs. The platform enables the user to interact with the visualized graph in a way that is very similar to the exploration of maps at multiple levels. Our approach involves an offline preprocessing phase that builds the layout of the graph by assigning coordinates to its nodes with respect to a Euclidean plane. The respective points are indexed with a spatial data structure, i.e., an R-tree, and stored in a database. Multiple abstraction layers of the graph based on various criteria are also created offline, and they are indexed similarly so that the user can explore the dataset at different levels of granularity, depending on her particular needs. Then, our system translates user operations into simple and very efficient spatial operations (i.e., window queries) in the backend. This technique allows for a fine-grained access to very large graphs with extremely low latency and memory requirements and without compromising the functionality of the tool. Our web-based prototype supports three main operations: (1) interactive navigation, (2) multi-level exploration, and (3) keyword search on the graph metadata.
The building materials of Cultural Heritage monuments are subjected to continuous degradation throughout the years, mainly due to their exposure to harsh and unexpected weather phenomena related to Climate Change. The specific climatic conditions at their vicinity, especially when there are local peculiarities such as onshore breeze, are of crucial importance for studying the deterioration rate and the identification of proper mitigation actions. Generalized models that are based on climate data can provide an insight on the deterioration but fail to offer a deeper understanding of this phenomenon. To this end, in the context of the EU-funded HYPERION project a distributed smart sensor network will be deployed at the Cultural Heritage monuments in four study areas as the solution to this problem. The developed system, which is demonstrated in this paper, includes smart IoT devices, called Smart Tags, designed to provide environmental measurements close to monuments, a middle-ware to facilitate the communication and a visualization platform where the collected information is presented. Last but not least, special focus is given to the device’s NB-IoT connectivity and its power efficiency by conducting various tests and extract useful conclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.