Galectin-1 (Gal1), a β-galactoside-binding protein abundantly expressed in tumor microenvironments, is associated with the development of metastasis in hepatocellular carcinomas (HCC). However, the precise roles of Gal1 in HCC cell invasiveness and dissemination are uncertain. Here, we investigated whether Gal1 mediate epithelial-mesenchymal transition (EMT) in HCC cells, a key process during cancer progression. We used the well-differentiated and low invasive HepG2 cells and performed 'gain-of-function' and 'loss-function' experiments by transfecting cells with Gal1 cDNA constructs or by siRNA strategies, respectively. Epithelial and mesenchymal markers expression, changes in apico-basal polarity, independent-anchorage growth, and activation of specific signaling pathways were studied using Western blot, fluorescence microscopy, soft-agar assays, and FOP/TOP flash reporter system. Gal1 up-regulation in HepG2 cells induced down-regulation of the adherens junction protein E-cadherin and increased expression of the transcription factor Snail, one of the main inducers of EMT in HCC. Enhanced Gal1 expression facilitated the transition from epithelial cell morphology towards a fibroblastoid phenotype and favored up-regulation of the mesenchymal marker vimentin in HCC cells. Cells overexpressing Gal1 showed enhanced anchorage-independent growth and loss of apico-basal polarity. Remarkably, Gal1 promoted Akt activation, β-catenin nuclear translocation, TCF4/LEF1 transcriptional activity and increased cyclin D1 and c-Myc expression, suggesting activation of the Wnt pathway. Furthermore, Gal1 overexpression induced E-cadherin downregulation through a PI3K/Akt-dependent mechanism. Our results provide the first evidence of a role of Gal1 as an inducer of EMT in HCC cells, with critical implications in HCC metastasis.
Hepatocellular carcinoma (HCC) represents a global health problem. Infections with hepatitis B or C virus, non-alcoholic steatohepatitis disease, alcohol abuse, or dietary exposure to aflatoxin are the major risk factors to the development of this tumor. Regardless of the carcinogenic insult, HCC usually develops in a context of cirrhosis due to chronic inflammation and advanced fibrosis. Galectins are a family of evolutionarily-conserved proteins defined by at least one carbohydrate recognition domain with affinity for β-galactosides and conserved sequence motifs. Here, we summarize the current literature implicating galectins in the pathogenesis of HCC. Expression of "proto-type" galectin-1, "chimera-type" galectin-3 and "tandem repeat-type" galectin-4 is up-regulated in HCC cells compared to their normal counterparts. On the other hand, the "tandem-repeat-type" lectins galectin-8 and galectin-9 are down-regulated in tumor hepatocytes. The abnormal expression of these galectins correlates with tumor growth, HCC cell migration and invasion, tumor aggressiveness, metastasis, postoperative recurrence and poor prognosis. Moreover, these galectins have important roles in other pathological conditions of the liver, where chronic inflammation and/or fibrosis take place. Galectin-based therapies have been proposed to attenuate liver pathologies. Further functional studies are required to delineate the precise molecular mechanisms through which galectins contribute to HCC.
Galectin-8 (gal-8) is a "tandem-repeat"-type galectin, containing two carbohydrate recognition domains connected by a linker peptide. gal-8 is expressed both in the cytoplasm and nucleus in vascular endothelial cells (ECs) from normal and tumor-associated blood vessels, and in lymphatic endothelial cells. Herein, we describe a novel role for gal-8 in the regulation of vascular and lymphatic angiogenesis and provide evidence of its critical implications in tumor biology. Functional assays revealed central roles for gal-8 in the control of capillary-tube formation, EC migration and in vivo angiogenesis. So far, two endothelial ligands have been described for gal-8, namely podoplanin in lymphatic vessels and CD166 (ALCAM, activated leukocyte cell adhesion molecule) in vascular ECs. Other related gal-8 functions are also summarized here, including cell adhesion and migration, which collectively demonstrate the multi-functionality of this complex lectin. Thus, gal-8 is an important component of the angiogenesis network, and an essential molecule in the extracellular matrix by providing molecular anchoring to this surrounding matrix. The implications of gal-8 in tumor angiogenesis remain to be further explored, but it is exciting to speculate that modulating gal-8-glycan interactions could be used to block lymphatic-vascular connections vital for metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.