This paper presents a methodology for linear embedding of nonlinear systems that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher-order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy to derive an error bound. The error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. The Koopman representation of the nonlinear system is then used to synthesize LQR feedback. The efficacy of the embedding approach is demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0.
There has been an increasing interest in the use of autonomous underwater robots to monitor freshwater and marine environments. In particular, robots that propel and maneuver themselves like fish, often known as robotic fish, have emerged as mobile sensing platforms for aquatic environments. Highly nonlinear and often under-actuated dynamics of robotic fish present significant challenges in control of these robots. In this work, we propose a nonlinear model predictive control (NMPC) approach to path-following of a tail-actuated robotic fish that accommodates the nonlinear dynamics and actuation constraints while minimizing the control effort. Considering the cyclic nature of tail actuation, the control design is based on an averaged dynamic model, where the hydrodynamic force generated by tail beating is captured using Lighthill's large-amplitude elongated-body theory. A computationally efficient approach is developed to identify the model parameters based on the measured swimming and turning data for the robot. With the tail beat frequency fixed, the bias and amplitude of the tail oscillation are treated as physical variables to be manipulated, which are related to the control inputs via a nonlinear map. A control projection method is introduced to accommodate the sector-shaped constraints of the control inputs while minimizing the optimization complexity in solving the NMPC problem. Both simulation and experimental results support the efficacy of the proposed approach. In particular, the advantages of the control projection method are shown via comparison with alternative approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.