We studied the adsorption kinetics of supported ultrathin films of dye-labeled polystyrene (l-PS) by combining dielectric spectroscopy (DS) and the interface-specific nonlinear optical second harmonic generation (SHG) technique. While DS is sensitive to the fraction of mobile dye moieties (chromophores), the SHG signal probes their anisotropic orientation. Time-resolved measurements were performed above the glass transition temperature on two different sample geometries. In one configuration, the l-PS layer is placed in contact with the aluminum surface, while in the other one, the deposition is done on a strongly adsorbed layer of neat PS. From the time dependence of the dielectric strength and SHG signal of the l-PS layer in contact with the metal, we detected two different kinetics regimes. We interpret these regimes in terms of the interplay between adsorption and orientation of the adsorbing labeling moieties. At early times, dye moieties get adsorbed adopting an orientation parallel to the surface. When adsorption proceeds to completeness, the kinetics slows down and the dye moieties progressively orient normal to the surface. Conversely, when the layer of l-PS layer is deposited on the strongly adsorbed layer of neat PS, both the dielectric strength and the SHG signal do not show any variation with time. This means that no adsorption takes place.
9′-Hydroxy-1,3,3-trimethylspiro[indoline-2,3′[3H]naphtha[2,1-b]-1,4oxazine] (SPO-7OH) was used in studies of photochromic transformations in polymer matrices. Illumination with UV lamp caused opening the spirostructure of the oxazine with formation of open merocyanine species absorbing at ca. 610 nm. The kinetic studies of thermal relaxation of the open form showed that this process can be described with a biexponential function including both photochemical reaction and rheological behaviour of the polymeric environment. Basing on Arrhenius plot of the rate constant ascribed to the photochemical reaction, the activation energy was determined, which was 66.1 and 84.7 kJ/mole for poly(methyl methacrylate-co-butyl methacrylate) and poly(vinylpyrrolidone) matrix, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.