Smart monitoring systems are currently gaining more attention and are being employed in several technological areas. These devices are particularly appreciated in the structural field, where the collected data are used with purposes of real time alarm generation and remaining fatigue life estimation. Furthermore, monitoring systems allow one to take advantage of predictive maintenance logics that are nowadays essential tools for mechanical and civil structures. In this context, a smart wireless node has been designed and developed. The sensor node main tasks are to carry out accelerometric measurements, to process data on-board, and to send wirelessly synthetic information. A deep analysis of the design stage is carried out, both in terms of hardware and software development. A key role is played by energy harvesting integrated in the device, which represents a peculiar feature and it is thanks to this solution and to the adoption of low power components that the node is essentially autonomous from an energy point of view. Some prototypes have been assembled and tested in a laboratory in order to check the design features. Finally, a field test on a real structure under extreme weather conditions has been performed in order to assess the accuracy and reliability of the sensors.
This paper deals with the development of a vibration control architecture in which many standalone active dampers are involved. Each device is able to independently perform the control task, since it is embedded with sensors, an inertial actuator and a microcontroller, in which the control algorithm is implemented. The aim of this architecture is to improve the performance of a decentralized control strategy through a partial sharing of data between devices. The proposed control solution is based on the optimal control theory; the Linear Quadratic Regulator works with the full-state of the system, which is not available in many applications. In order to provide the entire state vector, state estimation is implemented in each device. A state recovery algorithm is adopted to improve the quality of the estimation without placing a hefty burden on the wireless channel. Numerical analysis is made in order to study the advantages of this method. Finally, the proposed solution is validated with experimental results from a clamped-clamped beam.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.