The spinning and oscillatory motions of small orbiting satellites can be damped exploiting the magnetic energy dissipation occurring in onboard soft magnetic strips, cyclically excited by the oscillation of the earth field component along their axis. In this paper we investigate the role played by the intrinsic magnetic properties of the material, the aspect ratio of the strips, and their mutual arrangement in achieving maximum energy dissipation under typical spacecraft working conditions. Grain-oriented Fe-Si, mumetal, and Fe-based amorphous alloys, all endowed with near-rectangular hysteresis loops, are considered. Their energy loss behaviour is calculated when, either as single strip samples or arranged into an array of strips, they are subjected to a slowly oscillating magnetic field of defined peak value, emulating the action of the earth magnetic field on the travelling satellite. The strip size and array layout leading to maximum energy loss are predicted. Amorphous alloys, combining high saturation magnetization with flexible hysteresis loop properties, are shown to lead to the best damping behaviour under both oscillating and spinning satellite motions. In the latter case the Fe-Si strips appear to provide comparably high damping effects, while inferior behaviour is always predicted with mumetal samples
High-temporal-frequency monitoring of transport infrastructure is crucial to facilitate maintenance and prevent major service disruption or structural failures. Ground-based non-destructive testing (NDT) methods have been successfully applied for decades, reaching very high standards for data quality and accuracy. However, routine campaigns and long inspection times are required for data collection and their implementation into reliable infrastructure management systems (IMSs). On the other hand, satellite remote sensing techniques, such as the Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) method, have proven effective in monitoring ground displacements of transport infrastructure (roads, railways and airfields) with a much higher temporal frequency of investigation and the capability to cover wider areas. Nevertheless, the integration of information from (i) satellite remote sensing and (ii) ground-based NDT methods is a subject that is still to be fully explored in civil engineering. This paper aims to review significant stand-alone and combined applications in these two areas of endeavour for transport infrastructure monitoring. The recent advances, main challenges and future perspectives arising from their mutual integration are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.