Deformations monitoring in airport runways and the surrounding areas is crucial, especially in cases of low-bearing capacity subgrades, such as the clayey subgrade soils. An effective monitoring of the infrastructure asset allows to secure the highest necessary standards in terms of the operational and safety requirements. Amongst the emerging remote sensing techniques for transport infrastructures monitoring, the Persistent Scatterers Interferometry (PSI) technique has proven effective for the evaluation of the ground deformations. However, its use for certain demanding applications, such as the assessment of millimetric differential deformations in airport runways, is still considered as an open issue for future developments. In this study, a time-series analysis of COSMO–SkyMed satellite images acquired from January 2015 to April 2019 is carried out by employing the PSI technique. The aim is to retrieve the mean deformation velocity and time series of the surface deformations occurring in airport runways. The technique is applied to Runway 3 at the “Leonardo da Vinci” International Airport in Rome, Italy. The proposed PSI technique is then validated by way of comparison with the deformation outcomes obtained on the runway by traditional topographic levelling over the same time span. The results of this study clearly demonstrate the efficiency and the accuracy of the applied PSI technique for the assessment of deformations in airport runways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.