Ground-penetrating radar (GPR) was firstly used in traffic infrastructure surveys during the first half of the Seventies for testing in tunnel applications. From that time onwards, such non-destructive testing (NDT) technique has found exactly in the field of road engineering one of the application areas of major interest for its capability in performing accurate continuous profiles of pavement layers and detecting major causes of structural failure at traffic speed. This work provides an overview on the main signal processing techniques employed in road engineering, and theoretical insights and instructions on the proper use of the processing in relation to the quality of the data acquired and the purposes of the surveys
The Ebola virus epidemic burst in West Africa in late 2013, started in Guinea, reached in a few months an alarming diffusion, actually involving several countries (Liberia, Sierra Leone, Nigeria, Senegal, and Mali). Guinea and Liberia, the first nations affected by the outbreak, have put in place measures to contain the spread, supported by international organizations; then they were followed by the other nations affected. In the present EVD outbreak, the geographical spread of the virus has followed a new route: the achievement of large urban areas at an early stage of the epidemic has led to an unprecedented diffusion, featuring the largest outbreak of EVD of all time. This has caused significant concerns all over the world: the potential reaching of far countries from endemic areas, mainly through fast transports, induced several countries to issue information documents and health supervision for individuals going to or coming from the areas at risk. In this paper the geographical spread of the epidemic was analyzed, assessing the sequential appearance of cases by geographic area, considering the increase in cases and mortality according to affected nations. The measures implemented by each government and international organizations to contain the outbreak, and their effectiveness, were also evaluated.
A continuous increase of the demand for high-speed traffic, freight tonnage as well as of the train operating frequency is worsening the decay conditions of many railway infrastructures. This occurrence affects economy-related business as well as it contributes to raise maintenance cost. It is known that a failure of a railway track may result in tremendous economic losses, law liabilities, service interruptions and, eventually, fatalities. Parallel to this, requirements to maintain acceptable operational standards are very demanding. In addition to the above, a main issue nowadays in railway engineering is a general lack of funds to allow safety and comfort of the operations as well as a proper maintenance of the infrastructures. This is mostly the result of a traditional approach that, on average, tends to invest on high-priority cost, such as safety-related cost, compromising lower-priority cost (e.g., quality and comfort of the operations). A solution to correct this trend can be to move from a reactive to a proactive action planning approach in order to limit more effectively the likelihood of progressive track decay. Within this context, this paper reports a review on the use of traditional and non-destructive testing (NDT) methods for assessment and health monitoring of railway infrastructures. State-of-the-art research on a stand-alone use of NDT methods or a combination of them for specific maintenance tasks in railways is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.