A comparative study between the addition of Co3O4 micro-particles and nano-particles as densifying dopant of a SnO2 based varistor system was conducted. The ceramic composition was (99.9-X) %SnO2–X %Co3O4–0.05 %Cr2O3–0.05 %Nb2O5 where X = 0, 0.5, 1.0, 2.0 and 4.0 mol%. Two particle sizes of Co3O4 were used (~5 µm and ~50 nm). The addition of 0.5 mol% of Co3O4 nano-particles promoted an increase of grain size of sintered samples up to 7.9 µm, that is, the maximum value among all variations. Characterization techniques such as TGA, DTA, XRD, and Rietveld analysis revealed a decrease of 16 ºC in the formation temperature of Co2SnO4 as well as an increase of 2.6 wt% in the amount of said phase with the use of 4.0 mol% of Co3O4 nano-particles in comparison with micro-particles. Statistical analysis indicated that the addition of nano-particles of Co3O4 yield better repeatability on densification of ceramic samples. Residual porosity also was decreased. Electrical breakdown and non-linear coefficient values correspond to a non-ohmic behavior with potential application on manufacture of high voltage varistors. The findings of this work can be used as a reference for conducting a later study to improve the electrical properties or even to lower the sintering temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.