Ozone is a harmful tropospheric pollutant, causing the formation of reactive oxygen and nitrogen species that lead to oxidative damage in living beings. NF-κB can be activated in response to oxidative damage, inducing an inflammatory response. Nowadays, there are no reliable results that consolidate the use of antioxidants to protect from damage caused by ozone, particularly in highly polluted cities. Curcumin has a strong antioxidant activity and is a potent inhibitor of NF-κB activation with no side effects. The aim of this study is to evaluate the effect of curcumin in preventive and therapeutic approaches against oxidative damage, NF-κB activation, and the rise in serum levels of IL-1β and TNF-α induced by acute and chronic exposure to ozone in rat hippocampus. One hundred male Wistar rats were distributed into five groups; the intact control, curcumin-fed control, the ozone-exposed group, and the preventive and therapeutic groups. These last two groups were exposed to ozone and received food supplemented with curcumin. Lipid peroxidation was determined by spectrophotometry, and protein oxidation was evaluated by immunodetection of carbonylated proteins and densitometry analysis. Activation of NF-κB was assessed by electrophoretic mobility shift assay (EMSA), and inflammatory cytokines (IL-1β and TNF-α) were determined by ELISA. Curcumin decreased NF-κB activation and serum levels of inflammatory cytokines as well as protein and lipid oxidation, in both therapeutic and preventive approaches. Curcumin has proven to be a phytodrug against the damage caused by the environmental exposure to ozone.
In this study, we present patch-clamp characterization of the background potassium current in human lymphoma (Jurkat cells), generated by voltage-independent 16 pS channels with a high ( approximately 100-fold) K+/Na+ selectivity. Depending on the background K+ channels density, from few per cell up to approximately 1 open channel per microm2, resting membrane potential was in the range of -40 to -83 mV, approaching E (K) = -88 mV. The background K+ channels were insensitive to margotoxin (3 nM), apamine (3 nM), and clotrimazole (1 microM), high-affinity blockers of the lymphocyte Kv1.3, SKCa2, and IKCa1 channels. The current depended weakly on external pH. Arachidonic acid (20 microM) and Hg2+ (0.3-10 microM) suppressed background K+ current in Jurkat cells by 75-90%. Background K+ current was weakly sensitive to TEA+ (IC50 = 14 mM), and was efficiently suppressed by externally applied bupivacaine (IC50 = 5 microM), quinine (IC50 = 16 microM), and Ba2+ (2 mM). Our data, in particular strong inhibition by mercuric ions, suggest that background K+ currents expressed in Jurkat cells are mediated by TWIK-related spinal cord K+ (TRESK) channels belonging to the double-pore domain K+ channel family. The presence of human TRESK in the membrane protein fraction was confirmed by Western blot analysis.
Dietary polyphenolics, such as curcumin, have shown antioxidant and anti-inflammatory effects. Some antioxidants cause DNA strand breaks in excess of transition metal ions, such as copper. The aim of this study was to evaluate the in vitro effect of curcumin in the presence of increasing concentrations of copper to induce DNA damage in murine leukocytes by the comet assay. Balb-C mouse lymphocytes were exposed to 50 microM curcumin and various concentrations of copper (10 microM, 100 microM and 200 microM). Cellular DNA damage was detected by means of the alkaline comet assay. Our results show that 50 microM curcumin in the presence of 100-200 microM copper induced DNA damage in murine lymphocytes. Curcumin did not inhibit the oxidative DNA damage caused by 50 microM H2O2 in mouse lymphocytes. Moreover, 50 microM curcumin alone was capable of inducing DNA strand breaks under the tested conditions. The increased DNA damage by 50 mM curcumin was observed in the presence of various concentrations of copper, as detected by the alkaline comet assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.