Neonatal sepsis is a major cause of morbidity and mortality and its signs and symptoms are nonspecific, which makes the diagnosis difficult. The routinely used laboratory tests are not effective methods of analysis, as they are extremely nonspecific and often cause inappropriate use of antibiotics. Sepsis is the result of an infection associated with a systemic inflammatory response with production and release of a wide range of inflammatory mediators. Cytokines are potent inflammatory mediators and their serum levels are increased during infections, so changes from other inflammatory effector molecules may occur. Although proinflammatory and anti-inflammatory cytokines have been identified as probable markers of neonatal infection, in order to characterize the inflammatory response during sepsis, it is necessary to analyze a panel of cytokines and not only the measurement of individual cytokines. Measurements of inflammatory mediators bring new options for diagnosing and following up neonatal sepsis, thus enabling early treatment and, as a result, increased neonatal survival. By taking into account the magnitude of neonatal sepsis, the aim of this review is to address the role of cytokines in the pathogenesis of neonatal sepsis and its value as a diagnostic criterion.
Preterm birth accounts for nearly one million deaths among children under five years of age, and although its etiopathogenesis is not fully elucidated, ascending intrauterine infection and fetal inflammatory response seem to be the main triggers. The intense inflammatory response mediated by IL-1β, TNF-α, PAF, IFN-γ and IL-6, PGE and MMP-1 and MMP-9 causes fetal membrane damage and rupture, increased uterine contractions and biochemical and structural changes in the cervix. Furthermore, preterm neonates have deficient innate and adaptive immune responses characterized by reduced levels of IgG, opsonization and phagocytosis, as well as increased activation of Th1 cells in relation to Th2 cells. Therefore, this triad is favors the occurrence of neonatal complications, such as respiratory distress syndrome, necrotizing enterocolitis, retinopathy of prematurity and bronchopulmonary dysplasia. Due to serious maternal and child health complications of intrauterine infection, several studies have tried to identify biomarkers for the early diagnosis of this entity. This literature review aims to discuss the main scientific findings regarding the association between ascending intrauterine infection, immune system and preterm birth.
BackgroundFabry Disease (FD) is a genetic disorder caused by alpha-galactosidase A deficiency. Certain drugs, such as hydroxychloroquine, can produce renal deposits that mimic morphological findings seen in FD, characterizing a type of drug-induced renal phospholipidosis.Case presentationCase 1: A 28-year-old female patient with systemic lupus erythematosus who had been using hydroxychloroquine for 14 months presented subnephrotic proteinuria. Renal biopsy showed deposits compatible with FD. Neither activity analysis of alpha-galactosidase A nor genetic analysis were available and were not performed. These deposits were not detected in a subsequent renal biopsy three years after withdrawal of the medication, characterizing a possible hydroxychloroquine-induced renal phospholipidosis. Case 2: A 29-year-old male patient presented with acroparesthesia, angiokeratomas, cornea verticillata and subnephrotic proteinuria. Deposits compatible with FD were detected upon renal biopsy. The evaluation of alpha-galactosidase A showed no activity in both blood and leukocytes. Genetic analysis identified an M284 T mutation in exon 6, and such mutation was also found in other family members.ConclusionClinical investigation is necessary in suspected cases of Fabry Disease upon renal biopsy in order to confirm diagnosis. Drug-induced renal phospholipidosis should be considered in differential diagnosis in cases with intracellular osmiophilic, lamellar inclusions in electron microscopy.
Mucosal immunity consists of innate and adaptive immune responses which can be influenced by systemic immunity. Despite having been the subject of intensive studies, it is not fully elucidated what exactly occurs after HIV contact with the female genital tract mucosa. The sexual route is the main route of HIV transmission, with an increased risk of infection in women compared to men. Several characteristics of the female genital tract make it suitable for inoculation, establishment of infection, and systemic spread of the virus, which causes local changes that may favor the development of infections by other pathogens, often called sexually transmitted diseases (STDs). The relationship of these STDs with HIV infection has been widely studied. Here we review the characteristics of mucosal immunity of the female genital tract, its alterations due to HIV/AIDS, and the characteristics of coinfections between HIV/AIDS and the most prevalent STDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.