Summary• Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/ shrubs) differed in acclimation of leaf respiration ( R ) and photosynthesis ( A ) to a range of growth temperatures (7, 14, 21 and 28 ° C).• When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups.• Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a speciesdependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle.• Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.
We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 ∞ C and then shifted to 5 ∞ C. We compared the leaves shifted to 5 ∞ C for 3 and 10 d with new leaves that developed at 5 ∞ C with control leaves on plants at 23 ∞ C. At 23 ∞ C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 ∞ C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.
MicroRNAs (miRNAs) are short RNA chains (20-24 bp) which are emerging as important regulators of gene expression. miRNAs are encoded by specific genes, and in Arabidopsis, 190 genes have presently been identified. It has been shown that miR399 is essential for the phosphate starvation response, and recent studies have shown transcriptional changes in a number of additional miRNAs in response to a shortage of phosphate. In this study, global profiles of the miRNA in shoots of Arabidopsis plants grown on limited phosphate or full nutrient in combination with sucrose feed were analysed using the miRCURY LNA microRNA Array system. Furthermore, changes in miRNA transcript were compared between a mutant lacking the transcription factor phosphate starvation responses 1 (PHR1) and wild-type plants. The global analysis identified miRNAs belonging to nine families to respond to P deprivation, sucrose or PHR1. Among these, miR399d, miR827, miR866, miR391 and miR163 were most prominently induced upon P starvation, whereas miR169b/c was strongly induced in previously starved plants when provided with sufficient P and more so when combined with an addition of sucrose. This study shows that array analysis is in general agreement with data obtained by other high-throughput technologies. The array data were confirmed by real-time reverse transcriptase-polymerase chain reaction analyses of selected pri-miRNAs. Our data corroborate the implication that several miRNAs are involved in the P-starvation response and further identify miR866 and miR163 as new candidates of miRNAs associated with the regulation of the P-starvation response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.