Many Oreochromis species utilized in aquaculture were extensively introduced outside their native range in Africa. Given their recent evolutionary radiation, these species hybridize easily, posing a threat to the integrity of local adaptation. The objective of this work was to study the genetic diversity of the Mozambique tilapia (Oreochromis mossambicus) in its native range, southern Africa, and provide a method for identifying hybrids with genetic markers. We genotyped the mitochondrial DNA (mtDNA) control region (385 bp) of wild and farmed O. mossambicus, wild and farmed O. niloticus and morphologic wild hybrids. These data were complemented with published sequences of parapatric and sympatric Oreochromis taxa. Phylogeographic analysis showed the presence of two O. mossambicus lineages, the southernmost representing a recent Holocene radiation. Hybridization of O. mossambicus was indicated by the presence of O. niloticus and O. mortimeri-andersonii mtDNA specimens in the Limpopo basin and of O. karongae mtDNA in specimens from Malawi. We also genotyped seven suspected hybrid individuals from the Limpopo River, and 137 wild and farmed Mozambique and Nile tilapia samples with five microsatellite markers. Factorial Component Analysis, Bayesian clustering and assignment analyses consistently delineated an O. mossambicus and an O. niloticus group, with the putative hybrids positioned in between. Different levels of hybridization were detected by the Bayesian assignment. The complex nature of hybridization and introgression between cichlid species raises major concerns for the long-term integrity of Mozambique tilapia.
An estimated one-third of the world’s population is currently latently infected with Mycobacterium tuberculosis. Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Diagnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology combined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional platforms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multiplatform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the different platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with particular attention to study design in accounting for variation based on gender, age, and cell type.
We investigated host-derived biomarkers that were previously identified in QuantiFERON supernatants, in a large pan-African study. We recruited individuals presenting with symptoms of pulmonary TB at seven peripheral healthcare facilities in six African countries, prior to assessment for TB disease. We then evaluated the concentrations of 12 biomarkers in stored QuantiFERON supernatants using the Luminex platform. Based on laboratory, clinical and radiological findings and a pre-established algorithm, participants were classified as TB disease or other respiratory diseases(ORD). Of the 514 individuals included in the study, 179(34.8%) had TB disease, 274(51.5%) had ORD and 61(11.5%) had an uncertain diagnosis. A biosignature comprising unstimulated IFN-γ, MIP-1β, TGF-α and antigen-specific levels of TGF-α and VEGF, identified on a training sample set (n = 311), validated by diagnosing TB disease in the test set (n = 134) with an AUC of 0.81(95% CI, 0.76–0.86), corresponding to a sensitivity of 64.2%(95% CI, 49.7–76.5%) and specificity of 82.7%(95% CI, 72.4–89.9%). Host biomarkers detected in QuantiFERON supernatants can contribute to the diagnosis of active TB disease amongst people presenting with symptoms requiring investigation for TB disease, regardless of HIV status or ethnicity in Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.