Background Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact the epidemic. Methods Healthy, M. tuberculosis infected South African adolescents were followed for 2 years; blood was collected every 6 months. A prospective signature of risk was derived from whole blood RNA-Sequencing data by comparing participants who ultimately developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. The latter participants were household contacts of adults with active pulmonary tuberculosis disease. Findings Of 6,363 adolescents screened, 46 progressors and 107 matched controls were identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation The whole blood tuberculosis risk signature prospectively identified persons at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. Funding Bill and Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union and the South African Medical Research Council (detail at end of text).
The thymus undergoes age-related atrophy, coincident with increased circulating sex steroids from puberty. The impact of thymic atrophy is most profound in clinical conditions that cause a severe loss in peripheral T cells with the ability to regenerate adequate numbers of naive CD4+ T cells indirectly correlating with patient age. The present study demonstrates that androgen ablation results in the complete regeneration of the aged male mouse thymus, restoration of peripheral T cell phenotype and function and enhanced thymus regeneration following bone marrow transplantation. Importantly, this technique is also applicable to humans, with analysis of elderly males undergoing sex steroid ablation therapy for prostatic carcinoma, demonstrating an increase in circulating T cell numbers, particularly naive (TREC+) T cells. Collectively these studies represent a fundamentally new approach to treating immunodeficiency states in humans.
Rationale: Contacts of patients with tuberculosis (TB) constitute an important target population for preventive measures because they are at high risk of infection with Mycobacterium tuberculosis and progression to disease.Objectives: We investigated biosignatures with predictive ability for incident TB.Methods: In a case-control study nested within the Grand Challenges 6-74 longitudinal HIV-negative African cohort of exposed household contacts, we employed RNA sequencing, PCR, and the pair ratio algorithm in a training/test set approach. Overall, 79 progressors who developed TB between 3 and 24 months after diagnosis of index case and 328 matched nonprogressors who remained healthy during 24 months of follow-up were investigated. Measurements and Main Results:A four-transcript signature derived from samples in a South African and Gambian training set predicted progression up to two years before onset of disease in blinded test set samples from South Africa, the Gambia, and Ethiopia with little population-associated variability, and it was also validated in an external cohort of South African adolescents with latent M. tuberculosis infection. By contrast, published diagnostic or prognostic TB signatures were predicted in samples from some but not all three countries, indicating site-specific variability. Post hoc meta-analysis identified a single gene pair, C1QC/TRAV27 (complement C1q C-chain / T-cell receptor-a variable gene 27) that would consistently predict TB progression in household contacts from multiple African sites but not in infected adolescents without known recent exposure events.Conclusions: Collectively, we developed a simple whole blood-based PCR test to predict TB in recently exposed household contacts from diverse African populations. This test has potential for implementation in national TB contact investigation programs.
Tuberculosis (TB) remains a global health problem. The solution involves development of an effective vaccine, but has been limited by incomplete understanding of what constitutes protective immunity during natural infection with Mycobacterium tuberculosis. In this study, M. tuberculosis-specific responses following an overnight whole-blood assay were assessed by intracellular cytokine staining and luminex, and compared between TB cases and exposed household contacts. TB cases had significantly higher levels of IFN-cT cells compared with contacts. TB cases also had a significantly higher proportion of cells single-positive for TNF-a, but lower proportion of cells producing IL-2 alone and these differences were seen for both CD4 1 and CD8 1 T cells. Cytokine profiles from culture supernatants were significantly biased toward a Th1 phenotype (IFN-c and IL-12(p40)) together with a complete abrogation of IL-17 secretion in TB cases. Our data indicate that despite a robust response to TB antigens in active TB disease, changes in the pattern of cytokine production between TB infection and disease clearly contribute to disease progression.
Age-associated thymic involution is accompanied by decreased thymic output. This adversely affects general immune competence and T cell recovery following cytoreductive treatments such as chemotherapy. A causal link between increasing sex steroids and age-related thymic atrophy is well established. Although castration has been demonstrated to regenerate the atrophied thymus, little is known about how this is initiated or the kinetics of thymocyte regeneration. The present study shows that although castration impacts globally across thymocyte development in middle-aged mice, the regenerative effects are initiated in the immature triple-negative compartment and early T lineage progenitors (ETP). Specifically, there was a reduction in number of ETP with age, which was restored following castration. There was, however, no change in ETP reconstitution potential in ETP at this age or following castration. Furthermore, in a chemotherapy-induced model of thymic involution, we demonstrate castration enhances intrathymic proliferation and promotes differentiation through the triple-negative program. Clinically, reversible sex steroid ablation is achieved hormonally, and thus presents a means of ameliorating immune inadequacies, for example, following chemotherapy for bone marrow transplantation. By improving our understanding of the kinetics of thymic recovery, this study will allow more appropriate timing of therapy to achieve maximal reconstitution, especially in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.