Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.
Iron is an important redox-active element that is ubiquitous in both engineered and natural environments. In this study, the retention mechanism of Fe(II) on clay minerals was investigated using macroscopic sorption experiments combined with Mössbauer and extended X-ray absorption fine structure (EXAFS) spectroscopy. Sorption edges and isotherms were measured under anoxic conditions on natural Fe-bearing montmorillonites (STx, SWy, and SWa) having different structural Fe contents ranging from 0.5 to 15.4 wt % and different initial Fe redox states. Batch experiments indicated that, in the case of low Fe-bearing (STx) and dithionite-reduced clays, the Fe(II) uptake follows the sorption behavior of other divalent transition metals, whereas Fe(II) sorption increased by up to 2 orders of magnitude on the unreduced, Fe(III)-rich montmorillonites (SWy and SWa). Mössbauer spectroscopy analysis revealed that nearly all the sorbed Fe(II) was oxidized to surface-bound Fe(III) and secondary Fe(III) precipitates were formed on the Fe(III)-rich montmorillonite, while sorbed Fe is predominantly present as Fe(II) on Fe-low and dithionite-reduced clays. The results provide compelling evidence that Fe(II) uptake characteristics on clay minerals are strongly correlated to the redox properties of the structural Fe(III). The improved understanding of the interfacial redox interactions between sorbed Fe(II) and clay minerals gained in this study is essential for future studies developing Fe(II) sorption models on natural montmorillonites.
Extended X-ray absorption fine structure (EXAFS) and Mössbauer spectroscopy combined with macroscopic sorption experiments were employed to investigate the sorption mechanism of Fe(II) on an iron-free synthetic montmorillonite (Na-IFM). Batch sorption experiments were performed to measure the Fe(II) uptake on Na-IFM at trace concentrations as a function of pH and as a function of sorbate concentration at pH 6.2 and 6.7 under anoxic conditions (O2 < 0.1 ppm). A two-site protolysis nonelectrostatic surface complexation and cation exchange sorption model was used to quantitatively describe the uptake of Fe(II) on Na-IFM. Two types of clay surface binding sites were required to model the Fe(II) sorption, the so-called strong (≡S(S)OH) and weak (≡S(W)OH) sites. EXAFS data show spectroscopic differences between Fe sorbed at low and medium absorber concentrations that were chosen to be characteristic for sorption on strong and weak sites, respectively. Data analysis indicates that Fe is located in the continuity of the octahedral sheet at trans-symmetric sites. Mössbauer spectroscopy measurements confirmed that iron sorbed on the weak edge sites is predominantly present as Fe(II), whereas a significant part of surface-bound Fe(III) was produced on the strong sites (∼12% vs ∼37% Fe(III) species to total sorbed Fe).
Compensating differences: The formation of solid solutions is still not fully understood. A basic principle requiring clarification is the charge compensation mechanism upon incorporation of differently charged ions. Spectroscopic measurements show how coupled substitution of Na+ with Eu3+/Cm3+ can provide charge compensation when incorporating trivalent lanthanides into calcite on the Ca2+ site.
We investigated the adsorption of Tl onto purified Illite du Puy (IdP). Distribution coefficients (K) for trace Tl adsorption indicated a moderate pH-dependence from pH 2.5 to 11. Adsorption isotherms measured at Tl concentrations from 10 to 10 M at near-neutral pH on illite saturated with Na (100 mM), K (1 and 10 mM), NH (10 mM) or Ca (5 mM) revealed a high adsorption affinity of Tl in Na- and Ca-electrolytes and strong competition with K and NH. Cation exchange selectivity coefficients for Tl with respect to Na, K, NH, and Ca were derived using a 3-site sorption model. They confirmed the strong adsorption of Tl at the frayed edges of illite, with Tl selectivity coefficients between those reported for Rb and Cs. X-ray absorption spectra of Tl adsorbed onto Na-exchanged IdP indicated a shift from adsorption of (dehydrated) Tl at the frayed edges at low loadings to adsorption of (hydrated) Tl on planar sites at the highest loadings. Our results suggest that illite is an important adsorbent for Tl in soils and sediments, considering its often high abundance and its stability relative to other potential adsorbents and the selective nature of Tl uptake by illite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.