Humic substances (HS) are heterogeneous, redox-active organic macromolecules. While electron transfer to and from HS under reducing conditions is well investigated, comparatively little is known on the electron donating (i.e., antioxidant) properties of HS under oxic conditions. In this work, the electron donating capacities (EDCs) of terrestrial and aquatic HS were quantified by mediated electrochemical oxidation over a wide range of pH values and applied redox potentials (E(h)) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) as an electron transfer mediator. Electrochemical oxidation of three model humic acids (HAs) was largely irreversible, and the EDCs of these HAs increased with increasing E(h) and pH. These results suggest that HS contain a wide variety of moieties that are oxidized at different potentials and that, upon oxidation, release protons and undergo irreversible follow-up reactions. At a given pH and E(h), the EDCs of the HS correlated well with their titrated phenol contents suggesting phenolic moieties as major electron donating groups in HS. Comparing the EDCs of 15 HS with their electron accepting capacities (EACs), aquatic HS had higher EDCs and lower EACs than terrestrial HS of comparable aromaticities. These results indicate that oxidative transformation of HS in the environment results in a depletion of electron donating phenolic moieties with antioxidant properties relative to the electron accepting quinone moieties.
Two electrochemical methods to assess the redox properties of humic substances (HS) are presented: direct electrochemical reduction (DER) on glassy carbon working electrodes (WE) and mediated electrochemical reduction (MER) and oxidation (MEO) using organic radicals to facilitate electron transfer between HS and the WE. DER allows for continuous monitoring of electron and proton transfer to HS by chronocoulometry and automated acid titration, respectively, and of changes in bulk HS redox potential E(h). Leonardite Humic Acid (LHA) showed an H(+)/e(-) ratio of unity and a decrease in potential from E(h) = +0.18 to -0.23 V upon transfer of 822 mumol(e-) g(LHA)(-1) at pH 7, consistent with quinones as major redox-active functional moieties in LHA. MER and MEO quantitatively detected electrons in LHA samples that were prereduced by DER to different extents. MER and MEO therefore accurately quantify the redox state of HS. Cyclic DER and O(2)-reoxidation revealed that electron transfer to LHA was largely reversible. However, LHA contained a small pool of moieties that were not reoxidized, likely due to endergonic first electron transfer to O(2). Electron accepting capacities of 13 different HS, determined by MER, strongly correlated with their C/H ratios and aromaticities and with previously published values, which, however, were a factor of 3 smaller due to methodological limitations.
Two aquatic fulvic acids and one soil humic acid were irradiated to examine the resulting changes in the redox and photochemical properties of the humic substances (HS), the relationship between these changes, and their relationship to changes in the optical properties. For all HS, irradiation caused photooxidation, as shown by decreasing electron donating capacities. Photooxidation was accompanied by decreases in specific UV absorbance and increases in the E2/E3 ratio (254 nm absorbance divided by that at 365 nm). In contrast, photooxidation had little effect on the samples' electron accepting capacities. The coupled changes in optical and redox properties for the different HS suggest that phenols are an important determinant of aquatic HS optical properties and that quinones may play a more important role in soil HS. Apparent quantum yields of H2O2, ·OH, and triplet HS decreased with photooxidation, thus demonstrating selective destruction of HS photosensitizing chromophores. In contrast, singlet oxygen ((1)O2) quantum yields increased, which is ascribed to either decreased (1)O2 quenching within the HS microenvironment or the presence of a pool of photostable sensitizers. The photochemical properties show clear trends with SUVA and E2/E3, but the trends differ substantially between aquatic and soil HS. Importantly, photooxidation produces a relationship between the (1)O2 quantum yield and E2/E3 that differs distinctly from that observed with untreated HS. This finding suggests that there may be watershed-specific correlations between HS chemical and optical properties that reflect the dominant processes controlling the HS character.
Humic substances play a key role in biogeochemical and pollutant redox reactions. The objective of this work was to characterize the proton and electron transfer equilibria of the reducible moieties in different humic acids (HA). Cyclic voltammetry experiments demonstrated that diquat and ethylviologen mediated electron transfer between carbon working electrodes and HA. These compounds were used also to facilitate attainment of redox equilibria between redox electrodes and HA in potentiometric E(h) measurements. Bulk electrolysis of HA combined with pH-stat acid titration demonstrated that electron transfer to the reducible moieties in HA also resulted in proton uptake, suggesting decreasing reduction potentials E(h) of HA with increasing pH. This was confirmed by potentiometric E(h)-pH titrations of HA at different redox states. E(h) measurements of HA samples prereduced to different redox states by bulk electrolysis revealed reducible moieties in HA that cover a wide range of apparent standard reduction potentials at pH 7 from E(h)(0)* = +0.15 to -0.3 V. Modeling revealed an overall increase in the relative abundance of reducible moieties with decreasing E(h). The wide range of HA is consistent with its involvement in numerous environmental electron transfer reactions under various redox conditions.
In water treatment dissolved organic matter (DOM) is typically the major sink for chemical oxidants. The resulting changes in DOM, such as its optical properties have been measured to follow the oxidation processes. However, such measurements contain only limited information on the changes in the oxidation states of and the reactive moieties in the DOM. In this study, we used mediated electrochemical oxidation to quantify changes in the electron donating capacities (EDCs), and hence the redox states, of three different types of DOM during oxidation with chlorine dioxide (ClO2), chlorine (as HOCl/OCl(-)), and ozone (O3). Treatment with ClO2 and HOCl resulted in comparable and prominent decreases in EDCs, while the UV light absorbances of the DOM decreased only slightly. Conversely, ozonation resulted in only small decreases of the EDCs but pronounced absorbance losses of the DOM. These results suggest that ClO2 and HOCl primarily reacted as oxidants by accepting electrons from electron-rich phenolic and hydroquinone moieties in the DOM, while O3 reacted via electrophilic addition to aromatic moieties, followed by ring cleavage. This study highlights the potential of combined EDC-UV measurements to monitor chemical oxidation of DOM, to assess the nature of the reactive moieties and to study the underlying reaction pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.