The purpose of the study was to investigate root lengthening during orthodontic treatment in relation to the age of the patient, the developmental stage of the root, and the anticipated growth. Specifically, the potential benefit of treating young teeth was addressed. The sample consisted of 80 patients with Angle Class II division 1 malocclusions, treated with extraction of at least two maxillary first premolars, and edgewise technique with 0.018-inch slot brackets. Additionally, a cross-sectional control group of 66 untreated individuals matched to gender, and pre- and post-treatment age of the experimental group was included. Crown and root lengths of the maxillary incisors were measured on peri-apical radiographs before and after treatment, and corrected for image distortion. The stage of root development before treatment was recorded. Root elongation during treatment was found for 50 out of the 280 examined teeth. Age at treatment start was significantly higher among the patients showing root shortening of the lateral incisors during treatment than among those showing root elongation (P < 0.05). The stage of root development was significantly related to the direction of root length change, i.e. shortening or elongation. Roots elongated during treatment did not differ in length from untreated teeth of similarly aged individuals. There was no significant difference in the extent of root lengthening between the roots elongated during treatment and the normal root lengthening in age-matched untreated individuals. Post-treatment root length was significantly related to pre-treatment age. Roots that were incompletely developed before treatment reached a significantly greater length than those that were fully developed at the start of treatment. The results of this study show a definite advantage for younger teeth with regard to post-treatment root length. This finding may influence treatment planning strategy.
The purpose of this study was to compare the severity of apical root resorption occurring in patients treated with a standard edgewise and a straight-wire edgewise technique, and to assess the influence of known risk factors on root resorption incident to orthodontic treatment. The sample consisted of 80 patients with Angle Class II division 1 malocclusions, treated with extraction of at least two maxillary first premolars. Variables recorded for each patient included gender, age, ANB angle, overjet, overbite, trauma, habits, invagination, agenesis, tooth shedding, treatment duration, use of Class II elastics, body-build, general factors, impacted canines, and root form deviation. Forty patients were treated with a standard edgewise and 40 with a straight-wire edgewise technique, both with 0.018-inch slot brackets. Crown and root lengths of the maxillary incisors were measured on pre- and post-treatment periapical radiographs corrected for image distortion. Percentage of root shortening and root length loss in millimetres were then calculated. There was significantly more apical root resorption (P < 0.05) of both central incisors in the standard than in the straight-wire edgewise group. No significant difference was found for the lateral incisors. Root shortening of the lateral incisors was significantly associated with age, agenesis, duration of contraction period (distalization of incisors), and invagination, while root shortening of the central incisors was related to treatment group and trauma.
Dental casts of 160 Greek subjects (80 males, 80 females) were scanned by a structured-light scanner. The upper and lower right first molar occlusal surface 3D meshes were processed using geometric morphometric methods. A total of 265 and 274 curve and surface sliding semilandmarks were placed on the upper and lower molar surfaces, respectively. Principal component analysis and partial least square analysis were performed to assess shape parameters. Molars tended to vary between an elongated and a more square form. The first two principal components (PCs), comprising almost 1/3 of molar shape variation, were related to mesiodistal-buccolingual ratios and relative cusp position. Distal cusps displayed the greatest shape variability. Molars of males were larger than those of females (2.8 and 3.2% for upper and lower molars respectively), but no shape dimorphism was observed. Upper and lower molar sizes were significantly correlated (r(2) = 0.689). Allometry was observed for both teeth. Larger lower molars were associated with shorter cusps, expansion of the distal cusp, and constriction of the mesial cusps (predicted variance 3.25%). Upper molars displayed weaker allometry (predicted variance 1.59%). Upper and lower molar shape covariation proved significant (RV = 17.26%, P < 0.0001). The main parameter of molar covariation in partial least square axis 1, contributing to 30% of total covariation, was cusp height, in contrast to the primary variability traits exhibited by PC1 and PC2. The aim of this study was to evaluate shape variation and covariation, including allometry and sexual dimorphism, of maxillary and mandibular first permanent molar occlusal surfaces.
The aim of the present study was to investigate the effect of systemic administration of low-dose doxycycline (DC) on orthodontic root resorption. The effect on alveolar bone, the cell population involved, and the amount of tooth movement were also evaluated.Fifty-six 40-50-day-old male Wistar rats were used. Six animals served as untreated controls. Six animals were only administered DC for 7 days, by means of a mini-osmotic pump implanted subcutaneously. In 44 animals the maxillary first molar was mesialized by a fixed orthodontic appliance exerting 50 g force upon insertion. In 28 of these animals DC was administered at the time of appliance insertion and throughout the experiment. The animals were sacrificed 7, 10 or 14 days after force application and block sections processed for analysis. An area including the mesial aspect of the distopalatal root and the adjacent inter-radicular alveolar bone was histomorphometrically evaluated. The root resorption area, absolute alveolar bone area, distance between first and second molars, number of odontoclasts, osteoclasts, mononuclear cells on the root, tartrate-resistant acid phosphatase (TRAP)-positive cells on the root, bone, and in the periodontal ligament (PDL) were compared between DC-treated and non-DC-treated animals. The results revealed a significant reduction in root resorption, the number of odontoclasts, osteoclasts, mononuclear cells on the root surface, and TRAP-positive cells on the root and bone for the DC-administered group. The absolute alveolar bone area was greater, whereas the distance between the first and second molars did not differ between groups. In conclusion, systemic administration of low-dose DC in rats may have an inhibitory effect on orthodontically induced resorptive activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.