Objectives: The Finns, and to a more extreme extent the Saami, are genetic outliers in Europe. Despite the close geographical contact between these populations, no major contribution of Saami mtDNA haplotypes to the Finnish population has been detected. Methods: To examine the extent of maternal gene flow from the Saami into Finnish populations, we determined the mtDNA variation in 403 persons living in four provinces in central and northern Finland. For all of these samples, we assessed the frequencies of mtDNA haplogroups and examined sequence variation in the hypervariable segment I (HVS-I). The resulting data were compared with published information for Saami populations. Results: The frequencies of the mtDNA haplogroups differed between the populations of the four provinces, suggesting a distinction between northern and central Finland. Analysis of molecular variance suggested that the Saami deviated less from the population of northern Finland than from that of central Finland. Five HVS-I haplotypes, including that harboring the Saami motif and the Asian-specific haplogroup Z, were shared between the Finns and the Saami and allowed comparisons between the populations. Their frequency was highest in the Saami and decreased towards central Finland. Conclusions: The high frequency of certain mtDNA haplotypes considered to be Saami specific in the Finnish population suggests a genetic admixture, which appears to be more pronounced in northern Finland. Furthermore, the presence of haplogroup Z in the Finns and the Saami indicates that traces of Asian mtDNA genotypes have survived in the contemporary populations.
We have studied the pathogenic role of 10044A-->G, a heteroplasmic mitochondrial DNA (mtDNA) mutation that has been suggested to be pathogenic in one family with severe pediatric morbidity. We found the mutation at an average frequency of 1.9% among 259 individuals including healthy controls. The mutation appeared to be heteroplasmic by restriction fragment analysis but analysis of subcloned polymerase chain reaction fragments confirmed homoplasmy. The polymorphic nature of 10044A-->G was verified by demonstrating exclusive association with a rare mtDNA haplotype within haplogroup H. We suggest that the evaluation of putatively pathogenic mutations in mtDNA should include the analysis of a sufficient number of haplotype-matched control samples and that the heteroplasmy should be verified by cloning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.