Context. The sudden optical brightening of two young stellar objects, HBC 722 and VSX J205126.1+440523, located in the North America/Pelican Nebula Complex, was announced in August 2010. Early photometric and spectroscopic observations of these objects indicated that they may belong to the FUor or EXor class of young eruptive stars. The eruptions of FUors and EXors are often explained by enhanced accretion of material from the circumstellar disk to the protostar. Aims. In order to determine the true nature of these two objects, we started an optical and near-infrared monitoring program, and complemented our data with archival observations and data from the literature.Methods. We plot and analyze pre-outburst and outburst spectral energy distributions (SEDs), multi-filter light curves, and colorcolor diagrams. Results. The quiescent SED of HBC 722 is consistent with that of a slightly reddened normal T Tauri-type star. The source brightened monotonically in about two months, and the SED obtained during maximum brightness indicates the appearance of a hot, singletemperature blackbody. The current fading rate implies that the star will return to quiescence in about a year, which questions its classification as a bone fide FUor. The quiescent SED of VSX J205126.1+440523 looks like that of a highly embedded Class I source. The outburst of this source happened more gradually, but reached an unprecedentedly high amplitude. Its light curves showed a deep minimum two and a half months after the peak, when the object was close to its pre-outburst optical brightness. Further monitoring indicates that it is still far from being quiescent. Conclusions. The shape of the light curves as well as the bolometric luminosities and accretion rates suggest that these objects do not fit into the classic FUor group. Although HBC 722 exhibits all spectral characteristics of a bona fide FUor, its luminosity and accretion rate is too low and its timescale is too fast compared with classical FUors. VSX J205126.1+440523 seems to be an example where quick extinction changes modulate the light curve.
The fitting of radial velocity curves is a frequent procedure in binary stars and exoplanet research. In the majority of cases the fitting routines need to be fed with a set of initial parameter values and priors from which to begin the computations and their results can be affected by local minima. We present a new code, the rvfit code, for fitting radial velocities of stellar binaries and exoplanets using an Adaptive Simulated Annealing (ASA) global minimization method, which fastly converges to a global solution minimum without the need to provide preliminary parameter values. We show the performance of the code using both synthetic and real data sets: double-lined binaries, single-lined binaries, and exoplanet systems. In all examples the keplerian orbital parameters fitted by the rvfit code and their computed uncertainties are compared with literature solutions. Finally, we provide the source code with a working example and a detailed description on how to use it.
Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent accretion and variable line-of-sight extinction play a combined role in the flux changes. Aims. In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 μm and 2.2 μm from the ground and between 3.6 μm and 160 μm from space. Methods. We analyze the light curves and study the color−color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results. We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions. The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.