BackgroundWe have investigated whether an acute metabolic damage to astrocytes during the neonatal period may critically disrupt subsequent brain development, leading to neurodevelopmental disorders. Astrocytes are vulnerable to glutaric acid (GA), a dicarboxylic acid that accumulates in millimolar concentrations in Glutaric Acidemia I (GA-I), an inherited neurometabolic childhood disease characterized by degeneration of striatal neurons. While GA induces astrocyte mitochondrial dysfunction, oxidative stress and subsequent increased proliferation, it is presently unknown whether such astrocytic dysfunction is sufficient to trigger striatal neuronal loss.Methodology/Principal FindingsA single intracerebroventricular dose of GA was administered to rat pups at postnatal day 0 (P0) to induce an acute, transient rise of GA levels in the central nervous system (CNS). GA administration potently elicited proliferation of astrocytes expressing S100β followed by GFAP astrocytosis and nitrotyrosine staining lasting until P45. Remarkably, GA did not induce acute neuronal loss assessed by FluoroJade C and NeuN cell count. Instead, neuronal death appeared several days after GA treatment and progressively increased until P45, suggesting a delayed onset of striatal degeneration. The axonal bundles perforating the striatum were disorganized following GA administration. In cell cultures, GA did not affect survival of either striatal astrocytes or neurons, even at high concentrations. However, astrocytes activated by a short exposure to GA caused neuronal death through the production of soluble factors. Iron porphyrin antioxidants prevented GA-induced astrocyte proliferation and striatal degeneration in vivo, as well as astrocyte-mediated neuronal loss in vitro.Conclusions/SignificanceTaken together, these results indicate that a transient metabolic insult with GA induces long lasting phenotypic changes in astrocytes that cause them to promote striatal neuronal death. Pharmacological protection of astrocytes with antioxidants during encephalopatic crisis may prevent astrocyte dysfunction and the ineluctable progression of disease in children with GA-I.
Glutaric acid (GA) is a neurotoxic metabolite that accumulates in the CNS of patients with glutaric acidemia-I (GA-I), a neurometabolic disease caused by deficient activity of glutaryl-CoA dehydrogenase. Most GA-I patients display characteristic CNS lesions, mainly in the gray and white matter of basal ganglia and cerebral cortex. Neurons and astrocytes are believed to be vulnerable to millimolar concentrations of GA. However, little is known about the effects of GA on oligodendrocytes (OL) and the myelination process in the postnatal brain. Here, we show that a single intracerebroventricular administration of GA to rat neonatal pups induced a selective and long-lasting myelination failure in the striatum but no deleterious effect in the myelination of the corpus callosum. At 45 days post-GA injection, the myelinated area of striatal axonal bundles was decreased by 35 %, and the expression of myelin basic protein and myelin-associated glycoprotein (MAG) reduced by 25 and 60 %, respectively. This was accompanied by long lasting cytopathology features in MAG and CC-1-expressing OLs, which was confirmed by transmission electron microscopy. Remarkably, GA did not induce acute loss of pre-OLs in the striatum as assessed by NG2 or PDGFRα immunohistochemistry, suggesting an indirect and progressive mechanism for OL damage. In accordance, GA-induced white matter injury was restricted to the striatum and associated to GA-induced astrocytosis and neuronal loss. In conclusion, the current evidence indicates a pathogenic mechanism by which GA can permanently affect myelin status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.