The intrinsically complex nature of fish and seafood, as well as the complicated organisation of the international fish supply and market, make struggle against counterfeiting and falsification of fish and seafood products very difficult. The development of fast and reliable omics strategies based on spectroscopy in conjunction with multivariate data analysis has been attracting great interest from food scientists, so that the studies linked to fish and seafood authenticity have increased considerably in recent years. The present work has been designed to review the most promising studies dealing with the use of qualitative spectroscopy and chemometrics for the resolution of the key authenticity issues of fish and seafood products, with a focus on species substitution, geographical origin falsification, production method or farming system misrepresentation, and fresh for frozen/thawed product substitution. Within this framework, the potential of fluorescence, vibrational, nuclear magnetic resonance, and hyperspectral imaging spectroscopies, combined with both unsupervised and supervised chemometric techniques, has been highlighted, each time pointing out the trends in using one or another analytical approach and the performances achieved.
The demand for fish and seafood is growing worldwide. Meanwhile, problems related to the integrity and safety of the fishery sector are increasing, leading legislators, producers, and consumers to search for ways to effectively protect themselves from fraud and health hazards related to fish consumption. What is urgently required now is the availability of reliable, truthful, and reproducible methods assuring the correspondence between the real nature of the product and label declarations accompanying the same product during its market life. The evaluation of the inorganic composition of fish and seafood appears to be one of the most promising strategies to be exploited in the near future to assist routine and official monitoring operations along the supply chain. The present review article focuses on exploring the latest scientific achievements of using the multi-elemental composition of fish and seafood as an imprint of their authenticity and traceability, especially with regards to the geographical origin. The scientific literature of the last 10 years focusing on the analytical determination and statistical elaboration of elemental data (alone or in combination with methodologies targeting other compounds) to verify the identity of fishery products is summarized and discussed.
In this work, stable isotope ratio (SIR) and rare earth elements (REEs) analyses, combined with multivariate data elaboration, were used to explore the possibility to authenticate European sea bass (Dicentrarchus labrax L.) according to: i) production method (wild or farmed specimens); ii) geographical origin (Western, Central or Eastern Mediterranean Sea). The dataset under investigation included a total of 144 wild and farmed specimens coming from 17 different European areas located in the Mediterranean Sea basin. Samples were subjected to SIR analysis (carbon and nitrogen) and REEs analysis (lanthanum, europium, holmium, erbium, lutetium, and terbium). Then, Analytical data were handled by Principal Component Analysis (PCA) and then by Orthogonal Partial Last Square Discriminant Analysis (OPLS-DA), to obtain functional classification models to qualitatively discriminate sea bass according to the conditions under study. OPLSDA models provided good correct classification rate both for production method and geographical origin. It was confirmed that chemometric elaboration of data obtained from SIR and REEs analyses can be a suitable tool for an accurate authentication of European sea bass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.