Current medical methods still confront numerous limitations and barriers to detect and fight against illnesses and disorders. The introduction of emerging technologies in the healthcare industry is anticipated to enable novel medical techniques for an efficient and effective smart healthcare system. Internet of Things (IoT), Wireless Sensor Networks (WSN), Big Data Analytics (BDA), and Cloud Computing (CC) can play a vital role in the instant detection of illnesses, diseases, viruses, or disorders. Complicated techniques such as Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) could provide acceleration in drug and antibiotics discovery. Moreover, the integration of visualization techniques such as Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) with Tactile Internet (TI), can be applied from the medical staff to provide the most accurate diagnosis and treatment for the patients. A novel system architecture, which combines several future technologies, is proposed in this paper. The objective is to describe the integration of a mixture of emerging technologies in assistance with advanced networks to provide a smart healthcare system that may be established in hospitals or medical centers. Such a system will be able to deliver immediate and accurate data to the medical stuff in order to aim them in order to provide precise patient diagnosis and treatment.
Today, healthcare system models should have high accuracy and sensitivity so that patients do not have a misdiagnosis. For this reason, sufficient knowledge of the area is required, with the medical staff being able to validate the correctness of their decisions. Therefore, artificial intelligence (AI) in combination with other emerging technologies could provide many benefits in the medical sector. In this paper, we demonstrate the combination of Internet of Things (IoT) and cloud computing (CC) with AI-related techniques such as artificial intelligence (AI), machine learning (ML), deep learning (DL), and neural networks (NN) in order to provide a useful approach for scientists and doctors. Our proposed model makes use of these immersive technologies so as to provide epidemic forecasting and help accelerate drug and antibiotic discovery.
Predictive Maintenance in critical infrastructure is a fundamental tool for predicting a failure in advance and for avoiding catastrophic equipment damage that can be prevented and the time-consuming repair scheduling can be executed in time. Artificial Intelligence (AI) based predictive maintenance utilises intelligent data for accurate predictions in order to make immediate interventions on critical assets. In this paper, we propose a 5G-enabled Network Application (NetApp) for predictive maintenance in energy-related critical infrastructures. The proposed NetApp consists of several containerised components responsible for retrieving time-series operational data from a power plant and detecting potential outliers/anomalies regarding the operation of energy generators. For the anomaly detection process, an autoencoder is used. The evaluation results demonstrate the efficiency of the proposed NetApp.
Even if the field of medicine has made great strides in recent years, infectious diseases caused by novel viruses that damage the respiratory system continue to plague people all over the world. This type of virus is very dangerous, especially for people who deal with serious long-term breathing problems, like triggering asthma, pneumonia, or bronchitis infections. Thus, this paper demonstrates a new Secure Machine Learning Monitoring System for a model for virus detection. Our proposed model makes use of 4 basic emerging technologies, Internet of Things (IoT), Wireless Sensor Networks (WSN), Cloud Computing (CC), and Machine Learning (ML), to detect dangerous types of viruses that infect people or animals causing panic worldwide and deregulating human daily life. The proposed system is a robust system that could be established in various buildings, like hospitals, entertainment halls, universities, etc., and will provide accuracy, speed, and privacy for data collected in the detection of viruses.
The Internet of Things (IoT) was introduced as a recently developed technology in the telecommunications field. It is a network made up of real-world objects, things, and gadgets that are enabled by sensors and software that can communicate data with one another. Systems for monitoring gather, exchange, and process video and image data captured by sensors and cameras across a network. Furthermore, the novel concept of Digital Twin offers new opportunities so that new proposed systems can work virtually, but without differing in operation from a “real” system. This paper is a meticulous survey of the IoT and monitoring systems to illustrate how their combination will improve certain types of the Monitoring systems of Healthcare–IoT in the Cloud. To achieve this goal, we discuss the characteristics of the IoT that improve the use of the types of monitoring systems over a Multimedia Transmission System in the Cloud. The paper also discusses some technical challenges of Multimedia in IoT, based on Healthcare data. Finally, it shows how the Mobile Cloud Computing (MCC) technology, settled as base technology, enhances the functionality of the IoT and has an impact on various types of monitoring technology, and also it proposes an algorithm approach to transmitting and processing video/image data through a Cloud-based Monitoring system. To gather pertinent data about the validity of our proposal in a more safe and useful way, we have implemented our proposal in a Digital Twin scenario of a Smart Healthcare system. The operation of the suggested scenario as a Digital Twin scenario offers a more sustainable and energy-efficient system and experimental findings ultimately demonstrate that the proposed system is more reliable and secure. Experimental results show the impact of our proposed model depicts the efficiency of the usage of a Cloud Management System operated over a Digital Twin scenario, using real-time large-scale data produced from the connected IoT system. Through these scenarios, we can observe that our proposal remains the best choice regardless of the time difference or energy load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.