Salmonella enterica is the most important foodborne pathogen, and it is often associated with the contamination of poultry products. Annually, Salmonella causes around 93 million cases of gastroenteritis and 155,000 deaths worldwide. Antimicrobial therapy is the first choice of treatment for this bacterial infection; however, antimicrobial resistance has become a problem due to the misuse of antibiotics both in human medicine and animal production. It has been predicted that by 2050, antibiotic-resistant pathogens will cause around 10 million deaths worldwide, and the WHO has suggested the need to usher in the post-antibiotic era. The purpose of this review is to discuss and update the status of Salmonella antibiotic resistance, in particular, its prevalence, serotypes, and antibiotic resistance patterns in response to critical antimicrobials used in human medicine and the poultry industry. Based on our review, the median prevalence values of Salmonella in broiler chickens, raw chicken meat, and in eggs and egg-laying hens were 40.5% ( interquartile range [IQR] 11.5-58.2%), 30% (IQR 20-43.5%), and 40% (IQR 14.2-51.5%), respectively. The most common serotype was Salmonella Enteritidis, followed by Salmonella Typhimurium. The highest antibiotic resistance levels within the poultry production chain were found for nalidixic acid and ampicillin. These findings highlight the need for government entities, poultry researchers, and producers to find ways to reduce the impact of antibiotic use in poultry, focusing especially on active surveillance and finding alternatives to antibiotics.
In aquaculture and biological research, anaesthetics are widely used to minimize fish stress and injury during handling procedures such as sorting, morphometry measurements, blood sampling, tagging, transportation and vaccination, promoting the welfare of the fish (Wagner, Singer, & Mckinley, 2015). Some considerations such as efficacy, cost, availability and toxicity are important in order to choose the proper anaesthetic (Akbulut, Çakmak, Aksungur, & Çavdar, 2011). There are two types of commercial anaesthetics: natural and synthetic (Purbosari, Warsiki, Syamsu, & Santoso, 2019). Synthetic anaesthetic agents have been widely used in aquaculture including tricaine methanesulfonate (MS-222), quinaldine and 2-phenoxyethanol (Façanha & Gomes, 2005). However, they have some limitations given their high cost and associated toxicity (Velisek et al., 2006). Among natural agents, clove oil is the most common anaesthetic used in freshwater,
Salmonella is an important animal and human pathogen responsible for Salmonellosis, and it is frequently associated with the consumption of contaminated poultry products. The aim of this study was to estimate the prevalence of Salmonella in the poultry farms and to determine the genetic relationship. A total of 135 samples collected from fifteen broiler farms, including cloacal, feed, water, environmental and farm operator faeces samples were subjected to microbiological isolation. Molecular confirmation of Salmonella isolates was carried out by amplification of the invA gene, discrimination of d-tartrate-fermenting Salmonella isolates using multiplex PCR, and subsequently analysed by pulsed-field gel electrophoresis (PFGE). A survey questionnaire was conducted to identify potential risk factors for Salmonella presence in broiler farms. The prevalence of Salmonella at the farm level was 26.67%, and Salmonella isolates were serotyped as S. Paratyphi B and all isolates were d-tartrate-fermenting (dT+). PFGE showed three highly similar clusters and one significantly different Salmonella isolate. S. Paratyphi B continued to be present in different links of the poultry chain in the Tolima region, and identification of its main source is necessary to control its dissemination.
Background and Aim: Salmonella spp. are one of the most important food-borne pathogens in the world, emerging as a major public health concern. Moreover, multidrug-resistant (MDR) strains have been isolated from salmonellosis outbreaks, which compromise its treatment success. This study was conducted to characterize the phenotypic and genotypic antibiotic resistance profile of Salmonella strains isolated from broilers and humans from the regions of Tolima and Santander (Colombia). Materials and Methods: Salmonella spp. strains (n=49) were confirmed through molecular detection by amplification of the invA gene. Phenotypic antibiotic resistance was determined by the automated method and the agar diffusion method, and the presence of resistance genes was evaluated by PCR. Genotypic characterization was conducted using the enterobacterial repetitive intergenic consensus (ERIC)-PCR method, from which a dendrogram was generated and the possible phylogenetic relationships were established. Results: Salmonella isolates were classified as MDR strains exhibiting resistance to four antibiotic classes, penicillins, aminoglycosides, sulfonamides, and cephalosporins, and the human strains were resistant to gentamicin. At the genotypic level, the isolates contained the genes blaCMY2, blaCTX-M, blaPSE-1, blaTEM, aadA1, srtB, dfrA1, sul2, and floR. The genotyping results obtained by ERIC-PCR allowed the grouping of strains according to the source of isolation. Conclusion: The Salmonella spp. strains exhibited resistance to multiple antibiotics, as well as multiple genes associated with them, and the ERIC-PCR method was a technique that was helpful in generating clusters with biological significance.
Real-time PCR is widely used to study the relative abundance of mRNA due to its specificity, sensitivity, and repeatability quantification. However, relative quantification requires a reference gene, which should be stable in its expression, showing lower variation by experimental conditions or tissues. The aim of this study was to evaluate the stability of the expression of five commonly used reference genes (actb, ywhaz, b2m, sdha, and 18s rRNA) at different physiological stages (alert and emergency) in three different cattle breeds. In this study, five genes (actb, ywhaz, b2m, sdha, and 18s rRNA) were selected as candidate reference genes for expression studies in the whole blood from three cattle breeds (Romosinuano, Gyr, and Brahman) under heat stress conditions. The transcription stability of the candidate reference genes was evaluated using geNorm and NormFinder. The results showed that actb, 18SrRNA, and b2m expression were the most stable reference genes for whole blood of Gyr and Brahman breeds under two states of livestock weather safety (alert and emergency). Meanwhile, actb, b2m, and ywhaz were the most stable reference genes for the Romosinuano breed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.