We report mode-locking in holmium-doped all-fiber laser based on black phosphorus saturable absorber. The generated solitons are centered at 2094 nm with bandwidth reaching 4.2 nm and pulse duration of 1.3 ps. In harmonic mode-locking, up to 10th harmonic (290 MHz) was obtained. Properties of black phosphorus saturable absorber are investigated. Our findings validate black phosphorus suitability for ultrafast applications in mid-infrared.
In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support. The laser generated ultrashort soliton pulses at 2080 nm with bandwidth up to 6.1 nm. The influence of the output coupling ratio and the SA modulation depth on the mode-locking performance was also investigated.
In this Letter, we demonstrate an all-fiber holmium-doped laser operating in the stretched-pulse regime. As a result of dispersion management, the laser is capable of generating 190 fs pulses with a bandwidth of 53.6 nm. The pulses centered at 2060 nm reach 2.55 nJ of energy. Mode-locking is achieved with a multilayer graphene saturable absorber (SA). The Letter also presents the measurement of group velocity dispersion of active (Nufern SM-HDF-10/130), passive (SMF28), and dispersion-compensating (Nufern UHNA4) fibers in a 1.8-2.1 μm range. To the best of our knowledge, this is the first report on an all-fiber, stretched-pulse laser operating beyond 2 μm with nanomaterial-based SA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.