In this Letter, we demonstrate an all-fiber holmium-doped laser operating in the stretched-pulse regime. As a result of dispersion management, the laser is capable of generating 190 fs pulses with a bandwidth of 53.6 nm. The pulses centered at 2060 nm reach 2.55 nJ of energy. Mode-locking is achieved with a multilayer graphene saturable absorber (SA). The Letter also presents the measurement of group velocity dispersion of active (Nufern SM-HDF-10/130), passive (SMF28), and dispersion-compensating (Nufern UHNA4) fibers in a 1.8-2.1 μm range. To the best of our knowledge, this is the first report on an all-fiber, stretched-pulse laser operating beyond 2 μm with nanomaterial-based SA.
In this report, we demonstrate the preparation method of a multi-layer stack with a pre-defined number of graphene layers, which was obtained using chemical vapor deposition graphene deposited on a copper substrate and subsequently transferred onto a poly(methyl methacrylate) (PMMA) substrate. The prepared multi-layer stack can also be transferred onto an arbitrary substrate and in the end, the polymer can be removed, which in consequence significantly increases the range of possible graphene applications. The multi-layer character was confirmed by optical transmittance measurements and Raman spectroscopy, whereas the microstructure of the multi-layer graphene stack was investigated using Scanning Electron Microscopy. The electrical properties in the function of the number of graphene layers were assessed with standard Hall Effect measurements. Finally, we showed the practical application of the multi-layer graphene stack as a saturable absorber of a mode-locked Er-doped fiber laser.
In this Letter, we demonstrate an all-polarization-maintaining, stretched-pulse Tm-doped fiber laser generating ∼200 fs pulses centered at 1945 nm. As a saturable absorber, a graphene/poly(methyl methacrylate) composite was used. To the best of our knowledge, this is the first demonstration of stretched-pulse operation of a graphene-based fiber laser at 2 μm.
Dual-comb spectroscopy has emerged as an indispensable analytical technique in applications that require high resolution and broadband coverage within short acquisition times. Its experimental realization, however, remains hampered by intricate experimental setups with large power consumption. Here, we demonstrate an ultra-simple free-running dual-comb spectrometer realized in a single all-fiber cavity suitable for the most demanding Dopplerlimited measurements. Our dual-comb laser utilizes just a few basic fiber components, allows to tailor the repetition rate difference, and requires only 350 mW of electrical power for sustained operation over a dozen of hours. As a demonstration, we measure low-pressure hydrogen cyanide within 1.7 THz bandwidth, and obtain better than 1% precision over a terahertz in 200 ms enabled by a drastically simplified all-computational phase correction algorithm. The combination of the unprecedented setup simplicity, comb tooth resolution and high spectroscopic precision paves the way for proliferation of frequency comb spectroscopy even outside the laboratory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.