Background/Objectives: This study investigates determinants of sleep duration and its impact on nutritional status, resting energy expenditure (REE), cardiometabolic risk factors and hormones in children/adolescents. Subjects/Methods: In 207 girls and 207 boys (13.0±3.4 (6.1-19.9) years) body mass index standard deviation score (BMI SDS), waist circumference (WC) z-score, body composition (air-displacement plethysmography), REE (ventilated hood system; n ¼ 312) and cardiometabolic risk factors/hormones (n ¼ 250) were assessed. Greater than 90th percentile of BMI/WC references was defined as overweight/overwaist. Sleep duration, media consumption (TV watching/computer use), physical activity, dietary habits, parental BMI, socio-economic status and early infancy were assessed by questionnaire. Short sleep was defined as o10 h per day for children o10 years and otherwise o9 h per day. Results: Total 15.9% participants were overweight, mean sleep duration was 8.9±1.3 h per day. Age explained most variance in sleep (girls: 57.0%; boys: 41.2%) besides a high nutrition quality score (girls: 0.9%) and a low media consumption (boys: 1.3%). Sleep was inversely associated with BMI SDS/WC z-score (girls: r ¼ À0.17/À0.19, Po0.05; boys: r ¼ À0.21/À0.20, Po0.01), which was strengthened after adjusting for confounders. Short vs long sleep was associated with 5.5-/2.3-fold higher risks for obesity/overwaist (girls). After adjusting for age, REE (adjusted for fat-free mass) was positively associated with sleep in boys (r ¼ 0.16, Po0.05). Independently of age and WC z-score, short sleep was associated with lower adiponectin levels in boys (11.7 vs 14.4 mg/ml, Po0.05); leptin levels were inversely related to sleep in girls (r ¼ À0.23, Po0.05). Homoeostasis model assessment-insulin resistance (r ¼ À0.20, Po0.05) and insulin levels (r ¼ À0.20, Po0.05) were associated with sleep (girls), which depended on WC z-score. Conclusions: Age mostly determined sleep. Short sleep was related to a higher BMI SDS/WC z-score (girls/boys), a lower REE (boys), higher leptin (girls) and lower adiponectin levels (boys).
The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.
The metabolic syndrome is a cluster of metabolic disorders, namely dyslipidaemia, hypertension, obesity and glucose intolerance. Insulin resistance is the core phenomenon. Co-occurrence is associated with increased cardiovascular disease (CVD) risk. Observational studies found no increased CVD risk with increasing consumption of milk and other dairy products. In several studies dairy consumption was inversely associated with the occurrence of one or several facets of the metabolic syndrome. Many dairy components may contribute to the beneficial effects. Milk and particularly whey appeared insulinotropic when given in a single meal, but not in longer-term intervention. Medium chain fatty acids improve insulin sensitivity. Whey proteins, amino acids, medium chain fatty acids and in particular calcium and other minerals may contribute to the beneficial effect of dairy products on body weight and body fat. Peptides, calcium and other minerals reduce blood pressure. Fermented products and probiotic bacteria decrease absorption of cholesterol, sphingomyelin of cholesterol and fat, calcium of cholesterol, bile acids and fat. Proteins, peptides and bacteria may also reduce plasma cholesterol. Lactose, citrate, proteins and peptides improve weight control, blood pressure and plasma lipids indirectly, by improving calcium bioavailability. Furthermore, dairy consumption improves the bioavailability of folate and other secondary plant components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.