The diagnosis of tuberculosis (TB) in osteoarcheological series relies on the identification of osseous lesions caused by the disease. The study of identified skeletal collections provides the opportunity to investigate the distribution of skeletal lesions in relation to this disease. The aim of this study was to examine the skeletal evidence for TB in late adolescent and adult individuals from the identified human collection of the Certosa cemetery of Bologna (Italy, 19th-20th c.). The sample group consists of 244 individuals (138 males, 106 females) ranging from 17 to 88 years of age. The sample was divided into three groups on the basis of the recorded cause of death: TB (N = 64), pulmonary non-TB (N = 29), and other diseases (N = 151). Skeletal lesions reported to be related to TB were analyzed. The vertebral lesions were classified into three types: enlarged foramina (EnF, vascular foramina with diameter of 3-5 mm), erosions (ER), and other foramina (OtF, cavities of various shapes > 3 mm). A CT scan analysis was also performed on vertebral bodies. Some lesions were seldom present in our sample (e.g., tuberculous arthritis). OtF (23.7%) and subperiosteal new bone formation on ribs (54.2%) are significantly more frequent in the TB group with respect to the other groups. The CT scan analysis showed that the vertebrae of individuals who have died of TB may have internal cavities in the absence of external lesions. These traits represent useful elements in the paleopathological diagnosis of TB.
In modern day populations, children following a normal pattern of development acquire independent bipedal locomotion between the ages of 9 and 18 months. Variability in the timing of this psychomotor developmental milestone depends on various factors, including cultural influences. It is well known that trabecular bone adapts to changes in biomechanical loading and that this can be influenced by alternative locomotor modes, such as crawling, which may be adopted before the acquisition of bipedal locomotion. With the onset of crawling, increased loading of the distal metaphysis of the radius, a component of the wrist, may lead to changes in trabecular bone architecture. To test this hypothesis, eight distal metaphyses of the radius of nonpathological children aged 0 to 3 years from the Bologna collection of identified skeletons were μCT-scanned at a resolution of 10.7 μm. The microarchitectural parameters of the trabecular bone (trabecular bone volume fraction, trabecular thickness, trabecular spacing, and trabecular ellipsoid factor) were quantified for the entire metaphysis and 3D morphometric maps of the distribution of the bone volume fraction were generated. Analysis of these microarchitectural parameters and the 3D morphometric maps show changes in the trabecular bone structure between 6 and 15 months, the period during which both crawling and bipedalism are acquired. This preliminary study analyzed the trabecular structure of the growing radius in three dimensions for the first time, and suggests that ontogenetic changes in the trabecular structure of the radial metaphysis may be related to changes in the biomechanical loading of the wrist during early locomotor transitions, i.e. the onset of crawling. Moreover, microarchitectural analysis could supply important information on the developmental timing of locomotor transitions, which would facilitate interpretations of locomotor development in past populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.