Background: The vertebral artery originates from the subclavian artery and is divided into four segments. The aim of this study is to investigate the anatomical variations in the course and branches of the vertebral artery. Materials and methods: A research was performed via Pubmed database, using the terms; "variations of vertebral artery AND cadaveric study", "variations of vertebral artery AND cadavers" and "anomalies of vertebral artery AND cadavers". Results: A total of 24 articles met the inclusion criteria, 13 of them referring to variations of the origin of the vertebral artery, 9 to variations of the course and 3 to variations of its branches. On a total sample of 1192 cadavers of different population, origin of the left vertebral artery directly from the aortic arch was observed at 6.7%. In addition, among 311 cadavers, 17.4% were found with partially or fully ossified foramen of the atlas for the passage of the vertebral artery, while the bibliographic review also showed variants at the exit site of the artery from the transverse foramen of the axis. Conclusions: Despite the fact that variations of both the course and the branches of vertebral artery are in most cases asymptomatic, good knowledge of anatomy and its variants is of particular importance for the prevention of vascular complications during surgical and radiological procedures in the cervix area.
OBJECTIVEThe aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous.METHODSFifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III.RESULTSThe SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre–supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex.CONCLUSIONSStudy results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.