The key to sustainable development in the footwear industry through the principles of circular economy lies in taking care of the design, as well as the introduction of innovative and more resource efficient materials and processes to reduce or avoid the use of water, energy, hazardous chemicals and to minimise emissions and waste. In fact, the environmental footprint is already being considered as another requirement of the footwear through eco-design. In this sense, previous studies carried out by INESCOP regarding its environmental impact in terms of carbon footprint showed that 15% of it corresponds to the assembly processes, mainly by adhesive joints, due to their content on organic solvents, hazardous chemicals and polymers from fossil origin. Therefore, this paper focuses on recent developments carried out by INESCOP on more sustainable adhesives and adhesion processes for the upper-to-sole assembly in the footwear manufacturing process, through different approaches. Firstly, bio-based reactive polyurethane hot melt adhesives have been synthesised using polyols from different renewable sources. Secondly, the use of the low-pressure plasma surface treatment to improve the adhesion of polymeric materials used as soling materials was assessed in order to reduce volatile organic compounds emissions, as well as the use of hazardous chemicals for total automation of the bonding process.
The aim of this work is to develop sustainable reactive polyurethane hot melt adhesives (HMPUR) for footwear applications based on biobased polyols as renewable resources, where ma-croglycol mixtures of polyadipate of 1,4-butanediol, polypropylene and different biobased polyols were employed and further reacted with 4-4′-diphenylmethane diisocyanate. The different reactive polyurethane hot melt adhesives obtained were characterized with different experimental techniques, such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), softening temperature and melting viscosity. Finally, their adhesion properties were measured from T-peel tests on leather/HMPUR adhesives/SBR rubber joints in order to establish the viability of the used biobased polyols and the amount of these polyols that could be added to reactive polyurethane hot melt adhesives satisfactorily to meet the quality requirements of footwear joints. All biobased polyols and percentages added to the polyurethane adhesive formulations successfully met the quality requirements of footwear, being comparable to traditional adhesives currently used in footwear joints in terms of final strength. Therefore, these new sustainable polyurethane adhesives can be considered as suitable and sustainable alternatives to the adhesives commonly used in footwear joints.
The implementation of a Circular Economy model, promoted by the increasingly stricter European policies, demands a comprehensive approach to resource efficiency. In this sense, polyurethanes, one of the most used polymers worldwide, are strongly dependent of non-renewable fossil resources. Thus, boosting the production of new polyurethanes / a new polyurethane based on more sustainable raw materials is crucial to move towards the footwear industry decarbonisation. INESCOP, aware of the footwear industry’s environmental impact, focuses on reducing or removing fossil-based raw materials and opts for eco-friendly ones. These sustainable raw materials provide polyurethane adhesives with additional beneficial non-toxicity and sustainable characteristics, without harming their properties during their useful life. Therefore, the aim of this study is to synthesise and characterise reactive hotmelt polyurethanes from biomass and CO2-based polyols as bioadhesives for the footwear industry. The influence of biobased polyols on the polyurethane structure, and therefore, on their final properties was analysed by different experimental techniques in order to assess their viability for the upper to sole bonding process.
Polyurethanes, one of the most used polymers worldwide, are strongly dependent of non-renewable fossil resources. Thus, boosting the production of new polyurethanes based on more sustainable raw materials is crucial to move towards the footwear industry decarbonisation. The aim of this study is to synthesise and characterise reactive hotmelt polyurethanes from biomass and CO2-based polyols as bioadhesives for the footwear industry. The influence of biobased polyols on the polyurethane structure, and therefore, on their final properties was analysed by different experimental techniques such us Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Melting viscosity, Softening temperature and T-peel strength test, in order to assess their viability for the upper to sole bonding process. The results obtained indicated that the incorporation of different amounts of the biobased polyols produces changes in the structure and final performance of the polyurethanes. Therefore, adhesion test carried out by the T-peel test 72 h after the upper -to- sole bonding of the sustainable adhesives show high final adhesion values. These sustainable raw materials provide polyurethane adhesives with additional beneficial non-toxicity and sustainable characteristics, without harming their properties during their useful life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.