Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.Electronic supplementary materialThe online version of this article (doi:10.1186/s11671-016-1585-4) contains supplementary material, which is available to authorized users.
The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst.
Fluid imbibition-coupled laser interferometry (FICLI) is a technique in which the kinetics of a fluid infiltrating a nanoporous anodic alumina (NAA) membrane is monitored by the interference of a laser beam at the membrane top and bottom surfaces. Further processing of the measured data results in an estimate of the pore radius. In this work, we study the accuracy of FICLI in the detection of small changes in pore radius, and we evaluate the possibility of using such detection as a sensing paradigm. The accuracy is estimated by measuring samples with increasing pore radius, obtained by successive wet etching steps, and repeatability is evaluated by using different liquids. For decreasing pore radius, samples obtained by the successive deposition of polyelectrolyte double layers are used. With the aim of evaluating the possibility of the FICLI method to sense biological binding events, BSA attachment detection is demonstrated by applying FICLI to samples before and after immobilization of the protein. Results show that the technique permits an accurate estimation of the pore radius, the pore-etching rate (with a radius variation of r = 1.05 nm/min ± 0.11 nm/min), and the polyelectrolyte double layer thickness (with a radius variation of r = 3.2 nm ± 0.2 nm per polyelectrolyte double layer). Furthermore, the pore radius reduction measured after BSA immobilization (d = 4.9 nm ± 1.1 nm) is in good agreement with the protein size, as reported in the literature. With these results, we provide a sound basis for the applicability of FICLI as a sensitive technique for the characterization of NAA pore radius modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.